首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The newly synthesized 2‐(alk‐3‐en‐1‐ynyl)cyclohex‐2‐enones 4 undergo photodimerization (chemo‐ and regio‐)selectively at the exocyclic C?C bond to give diastereoisomeric mixtures of 1,2‐dialkynyl‐1,2‐dimethylcyclobutanes. On irradiation of 4 in the presence of 2‐chloroacrylonitrile, cyclobutane formation occurs again (chemo‐ and regio‐)selectively at the exocyclic C?C bond to afford diastereoisomeric mixtures of 2‐alkynyl‐1‐chloro‐2‐methylcyclobutanecarbonitriles. Similarly, compounds 4 undergo photoaddition to 2,3‐dimethylbuta‐1,3‐diene exclusively at the exocyclic C?C bond to afford mixtures of [2+2] and [4+2] cycloadducts.  相似文献   

2.
Irradiation (350 nm) of the newly synthesized 3‐(alk‐1‐ynyl)cyclohept‐2‐en‐1‐ones 1 and 2 leads to the selective formation of tricyclic head‐to‐head dimers. In the presence of 2,3‐dimethylbuta‐1,3‐diene, the (monocyclic) enone 1 affords trans‐fused 7‐alkynyl‐bicyclo[5.2.0]nonan‐2‐ones as major photoproducts, whereas photocycloaddition of benzocyclohept‐5‐en‐7‐one 2 to the same diene gives preferentially the eight‐membered cyclic allene 16 via ‘end‐to‐end’ cyclization of the intermediate allyl‐propargyl biradical 22 . On contact with acid, cycloocta‐1,2,5‐triene 16 isomerizes to cycloocta‐1,3,5‐triene 18 .  相似文献   

3.
The reaction between secondary amines, benzoyl isothiocyanate, and dialkyl acetylenedicarboxylates (=dialkyl but‐2‐ynedioates) in the presence of silica gel (SiO2) led to alkyl 2‐(dialkylamino)‐4‐phenylthiazole‐5‐carboxylates in fairly high yields. The structures of the products were confirmed by their IR, 1H‐ and 13C‐NMR, and mass spectra, and by a single‐crystal X‐ray structure determination.  相似文献   

4.
The successive treatment of the N,N‐disubstituted 4‐hydroxy‐2‐methylbutanamide 2a with lithium diisopropylamide (LDA) and diphenyl phosphorochloridate (DPPCl) led to the 1‐methylcyclopropanecarboxamide 10 in good yield. This base‐catalyzed cyclization offers a new approach to cyclopropanecarboxamides. Under similar conditions, the N‐monosubstituted 4‐hydroxy‐2‐methylbutanamide 2b gave the 3‐methylpyrrolidin‐2‐one 11 . The structure of the cyclopropanecarboxamide 10 was established by X‐ray crystallography.  相似文献   

5.
Functionalized 5‐alkyl‐3‐(trifluoromethyl)phenols were prepared by formal [3+3] cyclization of 1,3‐bis(silyloxy)buta‐1,3‐dienes with 1,1,1‐trifluoro‐4‐(silyloxy)alk‐3‐en‐2‐ones derived from 1,1,1‐trifluoroalkane‐2,4‐diones. The latter were prepared by condensation of the dianion of 1,1,1‐trifluoropentane‐2,4‐dione with alkyl halides.  相似文献   

6.
The existence of polymorphism in parent indazolin‐3‐one (=1,2‐dihydro‐3H‐indazol‐3‐one; 1 ) is reported as well as an X‐ray and NMR CPMAS study establishing that its 7‐nitro derivative 2 exists as the 3‐hydroxy tautomer. Absolute shieldings calculated at the GIAO/B3LYP/6‐311++G(d,p) level were used to determine the tautomeric oxo/hydroxy equilibrium in solution, i.e., always the 1H‐indazol‐3‐ol tautomer predominates.  相似文献   

7.
The synthesis of compound 2 and its derivatives 6 and 8 combining a pyrrolidine ring with an 1H‐pyrrole unit is described (Scheme 2). Their attempted usability as organocatalysts was not successful. Reacting these simple pyrrolidine derivatives with cinnamaldehyde led to the tricyclic products 3b, 9b , and 10b first (Scheme 1, Fig. 2). The final, major products were the pyrrolo‐indolizidine tricycles 3a, 9a , and 10a obtained via the iminium ion reacting intramolecularly with the nucleophilic β‐position of the 1H‐pyrrole moiety (cf. Scheme 1).  相似文献   

8.
Kinetic measurements for the thermal rearrangement of 2,2‐diphenyl‐1‐[(E)‐styryl]cyclopropane ( 22a ) to 3,4,4‐triphenylcyclopent‐1‐ene ( 23a ) in decalin furnished ΔH =31.0±1.2 kcal mol?1 and ΔS =?6.0±2.6 e.u. The lowering of ΔH by 20 kcal mol?1, compared with the rearrangement of the vinylcyclopropane parent, is ascribed to the stabilization of a transition structure (TS) with allylic diradical character. The racemization of (+)‐(S)‐ 22a proceeds with ΔH =28.2±0.8 kcal mol?1 and ΔS =?5±2 e.u., and is at 150° 106 times faster than the rearrangement. Seven further 1‐(2‐arylethenyl)‐2,2‐diphenylcyclopropanes 22 , (E)‐ and (Z)‐isomers, were synthesized and characterized. The (E)‐compounds showed only modest substituent influence in their krac (at 119.4°) and kisom (at 159.3°) values. The lack of solvent dependence of rate opposes charge separation in the TS, but a linear relation of log krac with log p.r.f., i.e., partial rate factors of radical phenylations of ArH, agrees with a diradical TS. The ring‐opening of the preponderant s‐trans‐conformation of 22 gives rise to the 1‐exo‐phenylallyl radical 26 that bears the diphenylethyl radical in 3‐exo‐position, and is responsible for racemization. The 1‐exo‐3‐endo‐substituted allylic diradical 27 arises from the minor s‐gauche‐conformation of 22 and is capable of closing the three‐ or the five‐membered ring, 22 or 23 , respectively. The discussion centers on the question whether the allylic diradical is an intermediate or merely a TS. Quantum‐chemical calculations by Houk et al. (1997) for the parent vinylcyclopropane reveal the lack of an intermediate. Can the conjugation of the allylic diradical with three Ph groups carve the well of an intermediate?  相似文献   

9.
10.
The reaction of N‐phenylimidoyl isoselenocyanates 1 with 2‐amino‐1,3‐thiazoles 10 in acetone proceeded smoothly at room temperature to give 4H‐1,3‐thiazolo[3,2‐a] [1,3,5]triazine‐4‐selones 13 in fair yields (Scheme 2). Under the same conditions, 1 and 2‐amino‐3‐methylpyridine ( 11 ) underwent an addition reaction, followed by a spontaneous oxidation, to yield the 3H‐4λ4‐[1,2,4]selenadiazolo[1′,5′:1,5] [1,2,4]selenadiazolo[2,3‐a]pyridine 14 (Scheme 3). The structure of 14 was established by X‐ray crystallography (Fig. 1). Finally, the reaction of 1‐methyl‐1H‐imidazole ( 12 ) and 1 led to 3‐methyl‐1‐(N‐phenylbenzimidoyl)‐1H‐imidazolium selenocyanates 15 (Scheme 4). In all three cases, an initially formed selenourea derivative is proposed as an intermediate.  相似文献   

11.
Several 2‐alkylquinolizinium‐1‐olates 9 , i.e., heterobetaines, were prepared from ketone 11 , the latter being readily available either from pyridine‐2‐carbaldehyde via a Grignard reaction, followed by oxidation with MnO2, or from 2‐picolinic acid (=pyridine‐2‐carboxylic acid) via the corresponding Weinreb amide and subsequent Grignard reaction. Mesoionic heterobetaines such as quinolizinium derivatives have the potential to undergo cycloaddition reactions with double and triple bonds, e.g., 1,3‐dipolar cycloadditions or Diels? Alder reactions. We here report on the scope and limitations of cycloaddition reactions of 2‐alkylquinolizinium‐1‐olates 9 with electron‐poor acetylene derivatives. As main products of the reaction, 5‐oxopyrrolo[2,1,5‐de]quinolizines (=‘[2.3.3]cyclazin‐5‐ones’) 19 were formed via a regioselective [2+3] cycloaddition, and cyclohexadienone derivatives, formed via a Diels? Alder reaction, were obtained as side products. The structures of 2‐benzylquinolizinium‐1‐olate ( 9a ) and two ‘[2.3.3]cyclazin‐5‐ones’ 19i and 19l were established by X‐ray crystallography.  相似文献   

12.
The mol­ecules of the title compound, C12H17N3O, are linked by two N—H?O hydrogen bonds to form a three‐dimensional network. The N?O distances are 2.804 (3) and 2.766 (3) Å, both involving a common acceptor O atom.  相似文献   

13.
A new germanium complex, cis‐[Ge(pyca)2(OH)2]?2 H2O ( 1 ; pyca=pyridine‐2‐carboxylato), was synthesized by the reaction of [Ge(acac)2Cl2] (acac=acetylacetonato=pentane‐2,4‐dionato) with potassium pyridine‐2‐carboxylate (Kpyca) in H2O/THF. According to the single‐crystal X‐ray diffraction analysis, each Ge‐atom of 1 is coordinated by two pyca ligands and two OH? groups (Fig. 1). These molecules are bonded to each other via a system of H‐bonds resulting in a sheet‐like structure (Fig. 2). The complex is decomposed during heating with stepwise mass loss and formation of GeO2 as final product (Fig. 3).  相似文献   

14.
The reaction of 1,4,5‐trisubstituted 1H‐imidazole‐3‐oxides 1 with 2,2‐bis(trifluoromethyl)ethene‐1,1‐dicarbonitrile ( 7 , BTF) yielded the corresponding 1,3‐dihydro‐2H‐imidazol‐2‐ones 10 and 2‐(1,3‐dihydro‐2H‐imidazol‐2‐ylidene)malononitriles 11 , respectively, depending on the solvent used. In one example, a 1 : 1 complex, 12 , of the 1H‐imidazole 3‐oxide and hexafluoroacetone hydrate was isolated as a second product. The formation of the products is explained by a stepwise 1,3‐dipolar cycloaddition and subsequent fragmentation. The structures of 11d and 12 were established by X‐ray crystallography.  相似文献   

15.
(Benzyloxycarbonyl)‐protected 3,4‐benzo‐7‐hydroxy‐2,9‐diazabicyclo[3.3.1]non‐7‐enes were prepared by one‐pot cyclizations of 1,3‐bis(silyl enol ethers) with quinazolines. Subsequent hydrogenation resulted in one‐pot deprotection and rearrangement to give 2‐(2‐aminophenyl)‐2,3‐dihydropyridin‐4(1H)‐ones.  相似文献   

16.
The structures of the main products resulting from photocyclodimerization of the title compound 2 and of other 3‐methyl‐substituted ‘oxacyclohex‐2‐en‐1‐ones’ (=dihydropyranones) were determined by X‐ray crystallography. In connection, the 13C‐NMR chemical shifts of the cyclobutane C‐atoms of these dimers allow a clear differentiation between head‐to‐head and head‐to‐tail regioisomers, all structurally related to those of isophorone ( 1 ).  相似文献   

17.
The reactions of 3‐phenyl‐1‐azabicyclo[1.1.0]butane with α‐chlorosulfenyl chlorides and sulfinyl chlorides lead to the corresponding sulfenamides and sulfinamides, respectively, which possess an azetidine ring. It is proposed that a two‐step mechanism occurs involving an intermediate carbenium ion, which is formed by the addition of the electrophile at the N‐atom and cleavage of the N(1)? C(3) bond. The structures of 9b and 10b are established by X‐ray crystallography.  相似文献   

18.
A study on the synthesis of the novel N‐(cyclic phosphonate)‐substituted phosphoramidothioates, i.e., O,O‐diethyl N‐[(trans‐4‐aryl‐5,5‐dimethyl‐2‐oxido‐2λ5‐1,3,2‐dioxaphosphorinan‐2‐yl)methyl]phosphoramidothioates 4a – l , from O,O‐diethyl phosphoramidothioate ( 1 ), a benzaldehyde or ketone 2 , and a 1,3,2‐dioxaphosphorinane 2‐oxide 3 was carried out (Scheme 1 and Table 1). Some of their stereoisomers were isolated, and their structure was established. The presence of acetyl chloride was essential for this reaction and accelerated the process of intramolecular dehydration of intermediate 5 forming the corresponding Schiff base 7 (Scheme 2).  相似文献   

19.
2,3,4‐Trisubstituted quinolines, substituted with adamantan‐1‐yl or (adamantan‐1‐yl)methyl in the 4‐position, were prepared from the corresponding admantan‐1‐yl 2‐aminophenyl ketones or admantan‐1‐ylmethyl 2‐aminophenyl ketones and ketones with an α‐CH2 group. These reactions were carried out under neat conditions or in toluene, and the products were obtained in moderate‐to‐excellent yields. The scope and limitations of the examined procedures are discussed. All new compounds are fully characterized by IR and NMR spectroscopy and mass spectrometry. The molecular structures of five new quinolines, obtained via single‐crystal X‐ray diffraction analyses, are discussed.  相似文献   

20.
Several reactions of the α,β‐unsaturated thioamide 8 with diazo compounds 1a – 1d were investigated. The reactions with CH2N2 ( 1a ), diazocyclohexane ( 1b ), and phenyldiazomethane ( 1c ) proceeded via a 1,3‐dipolar cycloaddition of the diazo dipole at the C?C bond to give the corresponding 4,5‐dihydro‐1H‐pyrazole‐3‐carbothioamides 12a – 12c , i.e., the regioisomer which arose from the bond formation between the N‐terminus of the diazo compound and the C(α)‐atom of 8 . In the reaction of 1a with 8 , the initially formed cycloadduct, the 4,5‐dihydro‐3H‐pyrazole‐3‐carbothioamide 11a , was obtained after a short reaction time. In the case of 1c , two tautomers 12c and 12c ′ were formed, which, by derivatization with 2‐chlorobenzoyl chloride 14 , led to the crystalline products 15 and 15 ′. Their structures were established by X‐ray crystallography. From the reaction of 8 and ethyl diazoacetate ( 1d ), the opposite regioisomer 13 was formed. The monosubstituted thioamide 16 reacted with 1a to give the unstable 4,5‐dihydro‐1H‐pyrazole‐3‐carbothioamide 17 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号