首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for the determination of 14 polybrominated diphenyl ethers (PBDEs) in sludge from wastewater treatment plants is presented. PBDEs were extracted by matrix solid‐phase dispersion assisted by sonication and determined by isotope dilution gas chromatography with electron impact mass spectrometric detection in the selected ion monitoring mode, using labelled 13C‐PBDEs as internal standards. The limits of detection and quantification for the tri‐ to hepta‐BDEs were in the range of 0.05 to 0.5 ng/g dry weight and 0.15 to 1.8 ng/g dry weight, respectively, and 1.6 ng/g dry weight and 5.6 ng/g dry weight for deca‐BDE‐209. The proposed analytical method was applied to determine PBDE levels in sewage sludge samples collected from 19 water treatment plants located in the province of Madrid (Spain). In all of the examined samples, BDE‐100 and BDE‐154 were the main compounds found with a mean concentration of 3.9 and 2.0 ng/g, respectively. PBDEs were detected in all of the samples, and their total concentrations not considering BDE‐209 were between 3.9 and 23.0 ng/g dry weight. The dominant PBDE congener in sewage sludge was BDE‐209, which constituted 38.7 to 97.3% of the total, and showed concentration levels ranging from 8.1 to 717.2 ng/g dry weight.  相似文献   

2.
S. Losada  M.T. Galceran 《Talanta》2009,80(2):839-91
A fast and simple method for the analysis of polybrominated diphenyl ethers (PBDEs) in fish samples was developed using a one-step extraction and clean-up by means of pressurized liquid extraction (PLE) combined with gas chromatography-ion trap tandem mass spectrometry (GC-ITMS-MS). The selective PLE method provided to obtain ready-to-analyse extracts without any additional clean-up step, using a sorbent as fat retainer inside the PLE cell. Several PLE operating conditions, such as solvent type, extraction temperature and time, number of cycles and type of fat retainer, were studied. Using Florisil as fat retainer, maximum recoveries of PBDEs (83-108%) with minimum presence of matrix-interfering compounds were obtained using a mixture of n-hexane:dichloromethane 90:10 (v/v) as solvent, an extraction temperature of 100 °C and a static extraction time of 5 min in combination with three static cycles. Quality parameters of the method were established using standards and fish samples. Limits of detection and quantification ranged from 10 to 34 pg g−1 wet weight and between 34 and 68 pg g−1 wet weight, respectively. In addition, good linearity (between 1 and 500 ng ml−1) and high precision (RSD % < 15%) were achieved. The method was validated using the standard reference material SRM-1945 (whale blubber) and was then applied to the analysis of PBDEs in fish samples.  相似文献   

3.
建立了一种同时测定沉积物中不同赋存形态的多溴联苯醚(PBDEs)和四溴双酚A(TBBPA)的分析方法.样品由等体积的丙酮和正己烷混合溶剂抽提得到自由态目标物,再通过碱性水解反应释放束缚态目标化合物.通过调节酸度(pH值)实现PBDEs和TBBPA的分离和提取.PBDEs由复合硅胶柱净化,运用气相色谱-质谱(负离子化学源)-分时段选择离子监测技术测定;TBBPA经重氮甲烷衍生化反应后由酸性硅胶柱预纯化,运用气相色谱-质谱(电子轰击源)-分时段选择离子监测技术测定.8种低溴联苯醚(BDE28,-47,-66,-100,-99,-154,-153,-183),十溴联苯醚(BDE209)和TBBPA的检出限分别为0.6~12.5 pg/g,172 pg/g,4 2 pg/g.方法具有良好的准确度和精确度,回收率均在74%~106%之间,RSD≤10%.对东江沉积物样品的分析表明,本方法能够实现不同形态的PBDEs 和TBBPA的有效检测.  相似文献   

4.
In order to reduce time of analysis, a new pressurized liquid extraction (PLE) method that automatically and rapidly achieves quantitative and selective extraction of 39 polybrominated diphenyl ether (PBDE) congeners in sediment samples was optimized. It consists of on-line cleanup by inclusion of sorbents in the extraction cell. The new method was compared with a conventional method based on the use of Soxhlet extraction followed by solid-phase extraction (SPE) with cartridges. The instrumental determination was performed by GC-MS, using negative chemical ionization in the selected-ion monitoring mode. Recoveries from 47 to 82% were obtained for spiked tri- to hepta-PBDE congeners in sediment sample. The repeatability of replicate extractions was better than 15% relative standard deviation. The detection limits obtained with the new developed method were between 1 and 46 pg/g dry weight. The reduction in the sample preparation (extraction + cleanup) time (from days to 30 min) with a similar efficiency than that afforded by the conventional Soxhlet extraction-SPE cleanup technique indicates the suitability of this method. The method was applied to sediment samples where the analytes were detected in the range of 0.86-2.49 ng/g dry mass.  相似文献   

5.
We have developed a method, termed solidification of floating organic drop microextraction (SFOME), for the extraction of polybrominated diphenyl ethers (PBDEs) in water and urine samples, this followed by quantification via HPLC. This method requires very small quantities of organic solvent consumption. It is based on exposing a floating solidified drop of an organic solvent on the surface of aqueous solution in a sealed vial. The organic drop is easily collected with a spatula, molten (at ambient temperature), and then submitted to HPLC. Experimental parameters including extraction solvent and its volume, disperser solvent and its volume, extraction time, ionic strength, stirring speed and extraction temperature were optimized. The enrichment factors of analytes are in the range from 921 to 1,462, and acceptable extraction recoveries (92%–118%) are obtained. The dynamic linear range for five PBDE congeners is in the range of 0.5–75?μg.L?1 and from 5 to 500?μg.L?1 for BDE 209. The correlation coefficients range from 0.9960 to 0.9999. The limits of detection (at S/N?=?3) for PBDE congeners vary between 0.01 and 0.04?μg.L?1. This method has been successfully applied to detecting PBDEs in two environmental waters and in human urine.
Figure
Under optimized conditions, the enrichment factors of PBDEs by solidification of floating organic drop microextraction were from 921 to 1,462, and extraction recoveries (92%–118%) were obtained. The correlation coefficients ranged from 0.9960 to 0.9999. The limits of detection (at S/N?=?3) for PBDE congeners varied between 0.01 and 0.04?μg.L?1.  相似文献   

6.
将超声辅助碱液分解杂质与溶剂萃取相结合,采用气相色谱-电子捕获检测(GC-ECD)建立了一种快速高效净化、萃取海洋沉积物中8种常见多溴联苯醚(PBDEs)的分析方法。样品在2.00 mol/L NaOH甲醇溶液中超声30 min,经正己烷萃取、单层硅胶净化、正己烷洗脱、旋蒸浓缩后定容至100 μL,采用GC-ECD分析。结果表明,PBDEs各单体的加标回收率为63.6%~110.3%,相对标准偏差(RSD)为1.7%~15.5%(n=5);十溴联苯醚(BDE-209)的检出限为0.097 ng/g,其他7种单体的检出限为0.002~0.011 ng/g(信噪比为3)。该方法的准确度和精密度较高,稳定性和回收率良好,可满足沉积物中PBDEs的分析要求。利用建立的方法测定了渤海表层沉积物中PBDEs的含量,8种PBDEs总含量在1.566~6.760 ng/g之间,其中BDE-209的含量为1.461~6.438 ng/g,总体呈现出由近岸向远岸递减的趋势,表明人为活动、表层冲刷和陆地河流的输入对渤海地区PBDEs的含量有重要影响。  相似文献   

7.
An efficient microwave-assisted extraction (MAE) method has been developed and evaluated for the quantification of eight major polybrominated diphenylethers (PBDEs) in sewage sludge. The PBDEs were extracted from wet and dry sludge in a microwave extraction unit using a hexane/acetone mixture for 35 min at a controlled temperature of 130 °C. The extract was concentrated, cleaned up on a silica gel column, and analyzed by gas chromatography/mass spectrometry (GC/MS) in the negative chemical ionization (NCI) mode. The MAE procedure exhibited higher extraction efficiency, specifically for BDE (brominated diphenylether) 209, than the conventional Soxhlet extraction. The test congeners were clearly separated under specific instrumental operating conditions, at a source temperature of 230 °C and a column length of 20 m. The present analytical method showed recovery efficiencies ranging from 80 to 110% when applied to the PBDE-free sludge spiked with eight PBDE congeners. The efficiency of the MAE method was confirmed using sludge obtained from four sewage treatment plants (STPs). The results indicate that BDE 47, 99, and 209 are the most abundant congeners present in these sewage sludges, which is consistent with previous reports.  相似文献   

8.
《Analytica chimica acta》2004,520(1-2):237-243
In the Czech Republic no study on the levels of brominated flame retardants in human milk has been conducted, yet. In the first step analytical method for determination of PBDEs in this bioindicator matrix was implemented. Liquid–liquid extraction (LLE) (hexane, diethyl ether), followed by gel permeation chromatography was employed for isolation of PBDEs. Identification and quantification of PBDEs was carried out by GC–MS operated in negative chemical ionisation (NCI). Two mass spectrometric technologies, one employing quadrupole and the other one high resolution (HR) time-of-flight (TOF) analyzer, etc. were used in our study. Detection limits (LODs) obtained by quadrupole analyzer ranged from 0.02 to 0.05 ng g−1 lipid weight, using high resolution time-of-flight analyzer LODs were significantly lower, ranging from 0.002–0.005 ng g−1 lipid weight, what enabled detection of minor PBDE congeners.

Within this pilot study 103 breast milk samples, obtained from mothers living in Olomouc region, were examined. Ten PBDE congeners were determined. All samples examined till now contained PBDEs residues, the dominating contaminant representing this group was congener BDE 47. In most of analysed samples levels of this compound ranged from 0.2 to 2 ng g−1 of lipid weight. Three exceptionally contaminated samples, containing levels of PBDEs 5–10 times higher than other samples, were found.  相似文献   


9.
鱼肉组织中多溴联苯醚的定量分析   总被引:9,自引:0,他引:9  
多溴联苯醚(PBDEs)是一类广泛用于家用电器、电子产品、塑料泡沫、家居装饰材料等行业的添加型阻燃剂[1],使用量最多的是五溴联苯醚(penta-BDE),八溴联苯醚(octa-BDE)和十溴联苯醚(deca-BDE)3种[2]。最近的研究表明[4-6],多溴联苯醚已广泛地存在于各种环境介质、生物体及人体中  相似文献   

10.
A simple and economical method for the determination of eight polybrominated diphenyl ethers (BDE‐28, 47, 99, 100,153,154,183, and 209) in water was developed. This method involves the use of ultrasound‐assisted dispersive liquid–liquid microextraction combined with GC‐MS in negative chemical ionization mode. Various parameters affecting the extraction efficiency, including the type and volume of extraction and dispersive solvents, salt concentration, extraction time, and ultrasonic time, were investigated. A volume of 1.0 mL of acetone (dispersive solvent) containing 10 μL tetrachloroethylene (extraction solvent) was injected into 5.0 mL of water samples and then emulsified by ultrasound for 2.0 min to produce the cloudy solution. Under the optimal condition, the enrichment factors for the eight PBDEs were varied from 845‐ to 1050‐folds. Good linearity was observed in the range of 1.0–200 ng L?1 for BDE‐28, 47, 99, and 100; 5.0–200 ng L?1 for BDE‐153, 154, and 183; and 5.0–500 ng L?1 for BDE‐209. The RSD values were in the range of 2.5–8.4% (n = 5) and the LODs ranged from 0.40 to 2.15 ng L?1 (S/N = 3). The developed method was applied for the determination of eight BPDEs in the river and lake water samples, and the mean recoveries at spiking levels of 5.0 and 50.0 ng L?1 were in the range of 70.6–105.1%.  相似文献   

11.
A time- and solvent-saving method, pressurized liquid extraction (PLE), to extract 4-nonylphenol (4-NP) in sediment was developed. The effects of various operational parameters (i.e., temperature, pressure, etc.) for the quantitative extraction of 4-NP by PLE were investigated. The analytes were then identified and quantitated by a large-volume injection GC-MS technique. The 4-NP can be completely extracted by methanol at 100 degrees C and 100 atm combined with 15 min static and then 10 min dynamic extraction steps (1 atm = 101,325 Pa). Recovery of 4-NP in spiked blank kaolin samples was 98% with 5% RSD. The degrees of recovery of 4-NP in the spiked sediment samples from a reservoir and a polluted river were 111% with 4% RSD and 106% with 5% RSD, respectively. The perfect applicability of PLE for 4-NP was determined after testing it with spiked and aged samples. The extraction efficiency of the PLE was compared with conventional Soxhlet and bath ultrasonication extraction methods using the spiked sediment samples.  相似文献   

12.
Standard reference materials (SRMs) are valuable tools in developing and validating analytical methods to improve quality assurance standards. The National Institute of Standards and Technology (NIST) has a long history of providing environmental SRMs with certified concentrations of organic and inorganic contaminants. Here we report on new certified and reference concentrations for 27 polybrominated diphenyl ether (PBDE) congeners in seven different SRMs: cod-liver oil, whale blubber, fish tissue (two materials), mussel tissue and sediment (two materials). PBDEs were measured in these SRMs, with the lowest concentrations measured in mussel tissue (SRM 1974b) and the highest in sediment collected from the New York/New Jersey Waterway (SRM 1944). Comparing the relative PBDE congener concentrations within the samples, we found the biota SRMs contained primarily tetrabrominated and pentabrominated diphenyl ethers, whereas the sediment SRMs contained primarily decabromodiphenyl ether (BDE 209). The cod-liver oil (SRM 1588b) and whale blubber (SRM 1945) materials were also found to contain measurable concentrations of two methoxylated PBDEs (MeO-BDEs). Certified and reference concentrations are reported for 12 PBDE congeners measured in the biota SRMs and reference values are available for two MeO-BDEs. Results from a sediment interlaboratory comparison PBDE exercise are available for the two sediment SRMs (1941b and 1944).  相似文献   

13.
气相色谱-负化学源质谱法测定海洋生物中的多溴联苯醚   总被引:1,自引:0,他引:1  
建立了气相色谱-负化学源质谱(GC-NCI-MS) 法分析海洋贝类样品中多溴联苯醚(PBDEs) 的方法. 样品采用索氏提取、多层硅胶柱分离纯化及外标法定量, 7种BDE单体的基质加标回收率平均值为67.4%~101%, 相对标准偏差为4.0%~18%. 对采自大连的白蛤、菲蛤、牡蛎等样品进行分析, 结果表明负化学源分析方法适用于海洋贝类中PBDEs的检测.  相似文献   

14.
We report here an efficient and comprehensive analytical methodology based on gas chromatography with high resolution mass spectrometry (GC–HRMS) to simultaneously determine PBDEs from mono to deca brominated and hydroxy (OH-) and methoxy (MeO-) PBDE metabolites in environmental samples, particularly, sediment, fish tissue and milk. Among a number of extraction and clean-up methods tested, pressurized liquid extraction followed by gel permeation chromatography and florisil clean-up proved to be simple, robust and optimized so that all target analytes (parent compounds and metabolites) were collected in a single fraction. Extracts were analyzed by GC–HRMS to identify PBDEs. Following, the same extracts were derivatized and re-analyzed by GC–HRMS to determine 11 target and 35 non-target OH- and MeO-PBDEs. Monitoring of the M+ for MeO-PBDEs and the [M−CH2CO]+ ions for derivatized OH-PBDEs at 10,000 resolution permitted unequivocal identification of the PBDE metabolites in the environmental matrices examined. The method was validated in terms of accuracy, precision, detection limits and long-term stability. The analytical precision obtained with this method was between 0.3 and 17%, and the limits of quantification were lower than 3.28 pg/g dry weight, 20.5 and 41.4 pg/g lipid weight in sediment, milk and fish, respectively. The method was applied to determine PBDEs and target and non-target metabolites in all three matrices.  相似文献   

15.
A one-step extraction and clean-up method using pressurized liquid extraction (PLE) (selective PLE) combined with gas chromatography-ion-trap tandem mass spectrometry (GC-ITMS-MS) was evaluated for the analysis of polybrominated diphenyl ethers (from tri- to hepta-PBDEs) at low concentrations in fish and shellfish samples. To this end, the performance of an on-line PLE extraction/clean-up method and of a classical Soxhlet extraction and clean-up method using a multi-layer modified silica column were compared. The two sample treatment methods provided similar results, although an important reduction in the sample treatment time (40 min per sample) was achieved using the selective PLE method. In addition, the suitability of the PLE combined with GC-ITMS-MS method was evaluated by comparing the results obtained in the analysis of fish samples with those obtained by gas chromatography-high resolution mass spectrometry (GC-HRMS). Good agreement between both techniques was obtained with differences between the mean values of less than 16%. The selective PLE method coupled to GC-ITMS-MS produced accurate results for PBDE determination with low limits of detection (1.0-16.8 pg g−1 wet weight) and quantification (3.1-51 pg g−1 wet weight) as well as good precision (RSD < 16%). This method has been applied to the analysis of PBDEs in fish and shellfish samples collected at fish markets in Catalonia (NE Spain).  相似文献   

16.
A new methodology based on pressurized liquid extraction (PLE) followed by LC-MS is presented for the simultaneous and unequivocal determination of alkylphenol ethoxylates (APEOs) and their degradation products, alkylphenols (APs) and alkylphenoxy carboxylates (APECs), in sediment samples. The protocol, applicable to a full range of APEO oligomers and degradation products, permits the sensitive and selective determination of APEOs (nEO = 1-15), APECs (nEO = 0-1) and APs at low ppb levels (LODs = 1-5 microg/kg) in sediment samples. Optimization of the operational parameters of PLE clearly demonstrates that significant thermal losses of APs occur during extraction at elevated temperatures. The loss of octylphenol (OP) at 100 degrees C was 61.2% and of nonylphenol (NP) 40.0%, whereas other compounds were completely recovered. Thus, to avoid losses due to the volatility of alkylphenols, a low extraction temperature should be applied. The conditions that gave the best results for all target compounds were as follows: extraction solvent mixture, methanol-acetone (1:1, v/v); temperature, 50 degrees C; pressure, 1500 p.s.i.; two static cycles. Using PLE and a subsequent clean-up with solid-phase extraction (SPE), the simultaneous extraction of APEOs, APs and APECs from sediment samples was achieved yielding recoveries >70% and producing low MS background noise. The developed methodology was applied on a routine basis to the analysis of alkylphenolic compounds in sediment samples. APEOs and their persistent degradation products were detected in significant concentrations in sediments from Portuguese rivers, especially at sites situated in the proximity of industrial plants (mainly the textile industry). The total concentration of alkylphenolic compounds (APEOs+APs+APECs) ranged from 155 to 2400 microg/kg. Of all the alkylphenolic compounds, NP comprised 40 to 50% with concentrations up to 1172 microg/kg.  相似文献   

17.
气相色谱-负化学源质谱快速测定母乳中的多溴联苯醚   总被引:1,自引:0,他引:1  
建立了母乳中8种多溴联苯醚(PBDEs:BDE28,BDE47,BDE99,BDE100,BDE153,BDE154,BDE183,BDE209)的气相色谱-负化学源质谱测定方法(GC-NCI/MS)。样品经索氏提取、酸化硅胶除脂、硅胶氧化铝色谱柱净化后,在7 m长的毛细管气相色谱柱上快速分离,NCI/MS以选择离子监测模式测定目标化合物。其中,三溴~七溴联苯醚采用内标法定量,十溴联苯醚(BDE209)采用同位素稀释法定量。8种PBDEs的检出限为1.74~6.35 pg/g(以脂肪计)。加标回收试验的回收率为61.5%~108%,相对标准偏差为2.06%~10.1%(n=6)。并采用母乳参考物质进一步证实了该方法的准确可靠。该方法提高了BDE209的分析灵敏度,而且分析成本相对较低,分析时间短,适于推广。  相似文献   

18.
Polybrominated diphenyl ethers (PBDEs) are group of chemicals which are representative persistent organic pollutants (POPs) and used as brominated flame retardants for many consumer products. PBDEs were phased out since 2009 but are still frequently observed in various environmental matrices and human body. Here, we report ssDNA aptamers which bind to BDE47, one of the PBDE congeners commonly found in various environmental matrices, and show affinity to other major tri-to hepta- BDE congeners. The PBDE specific aptamers were isolated from random library of ssDNA using Mag-SELEX. Two out of 15 sequences, based on their alignment and hairpin loop structures, were chosen to determine dissociation constant with BDE47 and showed from picomolar to nanomolar affinities (200 pM and 1.53 nM). The aptamers displayed high selectivity to the original target, BDE47, and implying general specificity to PBDE backbone with varying affinities to other congeners. Further, we showed that the use of two aptamers together could enhance the separation efficiency of BDE47 and other BDE congeners when dissolved in a solvent compared to use of single aptamer. These aptamers are expected to provide a tool for preliminary screening or quick separation of PBDEs in environmental samples prior to trace quantitative analysis.  相似文献   

19.
A method has been developed and validated for the concurrent extraction, clean‐up, and analysis of polybrominated diphenyl ethers (PBDEs), α‐, β‐, and γ‐hexabromocyclododecane (HBCD), and tetrabromobisphenol A (TBBPA) in human milk and serum. Milk and serum samples were extracted using accelerated solvent extraction with acetone/hexane 1:1, v/v and liquid–liquid extraction with methyl‐tert‐butyl ether/hexane 1:1, v/v, respectively. The removal of co‐extracted biogenic materials was achieved by gel permeation chromatography followed by sulfuric acid treatment. The fractionation of the PBDEs and HBCD/TBBPA was performed using a Supelco LC‐Si SPE cartridge. The detection of the PBDEs was then performed by GC–MS and that of the HBCDs and the TBBPA was performed using UPLC–MS/MS. The pretreatment procedure was optimized, and the characteristic ions and fragmentation of the analytes were studied by MS or MS/MS. A recovery test was performed using a matrix spiking test at concentrations of 0.05–10 ng/g. The recoveries ranged from 78.6–108.8% with RSDs equal to or lower than 14.04%. The LODs were 1.8–60 pg/g. The usefulness of the developed method was tested by the analysis of real human samples, and several brominated flame retardants in different samples were detected and analyzed.  相似文献   

20.
A method for the quantitative determination of ten musk fragrances extensively used in personal care products from sewage sludge was developed by using a pressurized liquid extraction (PLE) followed by an automated ionic liquid‐based headspace single‐drop microextraction and gas chromatography‐tandem mass spectrometry. The influence of main factors on the efficiency of PLE was studied. For all musks, the highest recovery values were achieved using 1 g of pretreated sewage sludge, H2O/methanol (1:1) as an extraction solvent, a temperature of 80°C, a pressure of 1500 psi, an extraction time of 5 min, 2 cycles, a 100% flush volume, a purge time of 120 s, and 1 g Florisil as in‐cell clean‐up extraction sorbent. The use and optimization of an in‐cell clean‐up sorbent was necessary to remove fatty interferents of the PLE extract that make the subsequent ionic liquid‐based headspace single‐drop microextraction difficult. Validation parameters, namely LODs and LOQs, ranged from 0.5–1.5 to 2.5–5 ng/g, respectively. Good levels of intra‐ and interday repeatabilities were obtained analyzing sewage sludge samples spiked at 10 ng/g (n = 3, RSDs < 10%). The method applicability was tested with sewage sludge from different wastewater treatment plants. The analysis revealed the presence of all the polycyclic musks studied at concentrations higher than the LOQs, ranging from 6 to 530 ng/g. However, the nitro musk concentrations were below the LOQs or, in the case of musk xylene, was not detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号