首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The present work describes the development of a selective and sensitive voltammetric sensor for simultaneous determination of catechol (CC) and hydroquinone (HQ), based on a glassy carbon (GC) electrode modified with manganese phthalocyanine azo‐macrocycle (MnPc) adsorbed on multiwalled carbon nanotubes (MWCNT). Scanning electron microscopy and scanning electrochemical microscopy were used to characterize the composite material (MnPc/MWCNT) on the glassy carbon electrode surface. The modified electrode showed excellent electrochemical activity towards the simultaneous oxidation and reduction of CC and HQ. On the MnPc/MWCNT/GC electrode, both CC and HQ can generate a pair of quasi‐reversible and well‐defined redox peaks. Under optimized experimental and operational conditions, the cathodic peak currents were linear over the range 1–600 µmol L?1 for both CC and HQ, with limits of detection of 0.095 and 0.041 µmol L?1, respectively. The anodic peak currents were also linear over the range 1–600 µmol L?1 for both CC and HQ, with limits of detection of 0.096 and 0.048 µmol L?1, respectively. The proposed method was effectively applied for the simultaneous detection of hydroquinone and catechol in water samples and the results were in agreement with those obtained by a comparative method described in the literature.  相似文献   

2.
Cysteine monolayer has been assembled onto bare gold electrode (SAM/Au), and subsequently deoxyribonucleic acid (DNA) has been successfully immobilized at the SAM/Au electrode. The thus modified electrode is assigned DNA/SAM/Au. Modification steps of the electrode were followed electrochemically using K4[Fe(CN6)] electrochemical marker. Also, the build‐up of the modified electrode composition is followed using EDX and the crystallographic orientation is inspected using XRD. The electrochemical behavior of paracetamol (PC) at DNA/SAM/Au electrode is investigated. Interestingly, the sluggish irreversible behavior of PC at the bare gold electrode is converted to a quasi‐reversible one at DNA/SAM/Au electrode pointing to some interaction between the immobilized DNA and PC. The enhanced electrochemical behavior of PC at modified DNA/SAM/Au electrode is successfully used for a sensitive electrochemical determination of PC. Square wave voltammetry (SWV) was used for this purpose. The concentration of PC was in linear relation with the peak current at the optimum conditions within the range 10.0–110.0 μg mL?1 with correlation coefficient (R2) of 0.998. Also, the standard deviation (SD) and relative standard deviation (RSD) were calculated and found to be 0.817 and 1.52, respectively, indicating the significance of the present method.  相似文献   

3.
Santos LS  Landers R  Gushikem Y 《Talanta》2011,85(2):1213-1216
This work describes the in situ immobilization of Mn(II) phthalocyanine (MnPc) in a porous SiO2/SnO2 mixed oxide matrix obtained by the sol gel processing method. The chemically modified matrix SiO2/SnO2/MnPc, possessing an estimated amount of 8 × 10−10 mol cm−2 of MnPc on the surface, was used to prepare an electrode to analyze dissolved oxygen in water by an electrochemical technique. The electrode was prepared by mixing the material with ultrapure graphite and evaluated using differential pulse voltammetry. Dissolved O2 was reduced at −0.31 V with a limit of detection (LOD) equal to 7.0 × 10−4 mmol L−1. A mechanism involving four electrons in O2 reduction was determined by the rotating disk electrode technique.  相似文献   

4.
In situ functionalization of a 4‐aminothiophenol (4ATP) self‐assembled monolayer (SAM) on a Au electrode (4ATP/Au SAM) by the Michael addition reaction is considered. Under optimized conditions, the nucleophilic attack of the amino group of 4ATP/Au SAM to give an electrogenerated ortho‐quinone produced a novel electroactive SAM (ESAM). The ESAM could be oxidized to quinone‐imine SAM (QI SAM) for the covalent immobilization of L ‐arginine monolayers. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Fourier transform infrared (FTIR) spectroscopy are employed to characterize these systems.. The apparent heterogeneous rate constant (ksapp) for ESAM/Au and the rate constant (k′) of the pseudo‐first order Michael addition reaction of L ‐arginine and ESAM/Au are calculated.  相似文献   

5.
In this work, the electrochemical behavior of ferrocene (Fc) was investigated by cyclic voltammetry (CV) in room temperature ionic liquids (RTILs) of 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (EMIBF4) on glass carbon (GC), edge plane pyrolytic graphite (EPPG) and multi‐walled carbon nanotube (MWCNTs)‐modified EPPG electrodes, respectively. The results demonstrated that on GC electrode, pairs of well‐defined reversible peaks were observed, while for the electrode of EPPG, the peak potential separation (ΔEp) is obviously larger than the theoretical value of 59 mV, hinting that the electrode of EPPG is distinguished from the commonly used electrode, consistent with the previous proposition that EPPG has many “defects”. To obtain an improved electrochemical response, multi‐walled carbon nanotubes (MWCNTs) were modified on the electrode of EPPG; the increased peak current and promoted peak potential separation not only proved the existence of “defects” in MWCNTs, but also supported that “creating active points” on an electrode is the main contribution of MWCNTs. Initiating the electrochemical research of Fc on the MWCNTs‐modified EPPG electrode in RTILs and verifying the presence of “defects” on both EPPG and MWCNTs using cyclic voltammograms (CVs) of Fc obtained in RTILs of EMIBF4, is the main contribution of this preliminary work.  相似文献   

6.
《Electroanalysis》2005,17(14):1251-1259
The influence of different surface pretreatment procedures on the electrochemical response of a polycrystalline gold electrode was evaluated. Mechanical polishing with slurry alumina (M), chemical oxidation with H2SO4/H2O2 (C), electrochemical polishing (potential cycling between ?0.1 V and 1.2 V vs. SCE) (E), chemical reduction with ethanol, and combinations among these treatments were employed to change the surface electrode characteristics. The efficiency of the proposed pretreatments was evaluated by electrochemical responses towards the redox couple ferri(II/III)‐ammonium sulfate and by the formation of a self‐assembly monolayer of 3‐mercaptopropionic acid (3 MPA SAM) on gold electrodes. The procedure (C) allowed important gold surfaces activation. Using procedures (C) and (E) the roughness of polycrystalline gold surfaces was significantly minimized and more reproducible surfaces could be obtained. From the profile of reductive desorption of 3 MPA SAM it was possible to verify that reduced gold surfaces generated better packed monolayers than oxidized ones and a comparative study using CV and DPV techniques showed that between the two desorption peaks, the one localized at more negative potential values corresponds to the cleavage of Au‐S bond from the chemisorbed thiol. In general, the improvement in the studied electrochemical responses could not only be attributed to an increase in the real surface area of the electrode, but to the chemical surface states set off by the pretreatment procedure.  相似文献   

7.
《Electroanalysis》2006,18(12):1173-1178
Nano‐scale zeolite Y crystals were synthesized, and palladium nanoparticles were prepared in the supercage of the zeolite by “ship‐in‐a‐bottle” approach. A novel method to fabricate zeolite‐modified electrode (ZME) loading Pd nanoparticles was developed, in which the zeolite Y loading Pd2+ ions was self‐assembled on (3‐mercaptopropyl) trimethoxysilane‐attached Au surface to form the stable and density packed multilayers (SAM‐ZME). The structures of zeolite Y and the SAM‐ZME were investigated by using TEM, XRD and SEM techniques. Pd2+ ions in the SAM‐ZME were converted into Pd nanoparticles (Pdn0) by two steps consisting of the electrochemical reduction as well as the succeeding admission and release of CO. The redox couple [Fe(CN)6]3?/4? was used to probe the electron‐transfer barrier properties during self‐assembling process. Moreover, the special properties of the SAM‐ZME loading Pdn0 were studied by using cyclic voltammetry and CO‐probe in situ FTIR spectroscopy. The results illustrated that Pdn0 in the SAM‐ZME exhibits higher electrocatalytic activity for oxidation of adsorbed CO than that of ZME prepared in our previous study by zeolite coating method. The present study is of importance in design and preparation of SAM‐ZME, which poccesseses excellent properties for the immobilization of electrocatalysts or biomolecules.  相似文献   

8.
The voltammetric behavior of dopamine (DA) and uric acid (UA) on a gold electrode modified with self‐assembled monolayer (SAM) of cysteamine (CA) conjugated with functionalized multiwalled carbon nanotubes (MWCNTs) was investigated. The film modifier of functionalized SAM was characterized by means of scanning electron microscopy (SEM) and also, electrochemical impedance spectroscopy (EIS) using para‐hydroquinone (PHQ) as a redox probe. For the binary mixture of DA and UA, the voltammetric signals of these two compounds can be well separated from each other, allowing simultaneous determination of DA and UA. The effect of various experimental parameters on the voltammetric responses of DA and UA was investigated. The detection limit in differential pulse voltammetric determinations was obtained as 0.02 µM and 0.1 µM for DA and UA, respectively. The prepared modified electrode indicated a stable behavior and the presence of surface COOH groups of the functionalized MWCNT avoided the passivation of the electrode surface during the electrode processes. The proposed method was successfully applied for the determination of DA and UA in urine samples with satisfactory results. The response of the gold electrode modified with MWCNT‐functionalized SAM method toward DA, UA, and ascorbic acid (AA) oxidation was compared with the response of the modified electrode prepared by the direct casting of MWCNT.  相似文献   

9.
The electrochemical behavior of cytochrome c (cyt‐c) that was electrostatically immobilized onto a self‐assembled monolayer (SAM) of captopril (capt) on a gold electrode has been investigated. Cyclic voltammetry, scanning electrochemical microscopy (SECM) and electrochemical impedance spectroscopy were employed to evaluate the blocking property of the capt SAM. SECM was used to measure the bimolecular electron transfer (ET) kinetics (kBI) between a solution‐based redox probe and the immobilized protein. In addition, the tunneling ET between the immobilized protein and the underlying gold electrode was calculated. A kBI value of (5.0±0.6)×108 mol?1 cm3 s?1 for the bimolecular ET and a standard tunneling rate constant (k0) of 46.4±0.2 s?1 for the tunneling ET have been obtained.  相似文献   

10.
CdS nanoclusters of four different sizes were integrated with ruthenium‐complex dyes. The cluster–dye crystalline composites, [Cd4(SPh)10][Ru(bpy)3], [Cd8S(SPh)16][Ru(bpy)3], [Cd8S(SPh)13?Cl?(CH3OCS2)2][Ru(phen)3], [Cd17S4(SPh)28][Ru(bpy)3], and [Cd32S14(SPh)40][Ru(phen)3]2 (phen=1,10‐phenanthroline and bpy=bipyridine), show intense absorption in the visible‐light region. They also exhibit size‐dependent photocurrent responses under the illumination of visible light. The photocurrent increases with increased cluster size. The dyes also have significant influence on the photocurrent generation of the composite.  相似文献   

11.
《Electroanalysis》2017,29(9):2083-2089
A facile and green electrochemical method for the fabrication of three‐dimensional porous nitrogen‐doped graphene (3DNG) modified electrode was reported. This method embraces two consecutive steps: First, 3D graphene/polypyrrole (ERGO/PPy) composite was prepared by electrochemical co‐deposition of graphene and polypyrrole on a gold foil. Subsequently, the ERGO/PPy composite modified gold electrode was annealed at high temperature. Thus 3DNG modified electrode was obtained. Scanning electron microscopy (SEM), X‐ray photoelectron spectroscopy (XPS) and Raman spectroscopy were used to characterize the structure and morphology of the electrode. The electrode exhibits excellent electroanalytical performance for the reduction of hydrogen peroxide (H2O2). By linear sweep voltammetric measurement, the cathodic peak current was linearly proportional to H2O2 concentration in the range from 0.6 μM to 2.1 mM with a sensitivity of 1.0 μA μM−1 cm−2. The detection limit was ascertained to be 0.3 μM. The anti‐interference ability, reproducibility and stability of the electrode were carried out and the electrode was applied to the detection of H2O2 in serum sample with recoveries from 98.4 % to 103.2 %.  相似文献   

12.
The electrochemical behavior of oxadiargyl at a graphene‐paste electrode modified with an azo dye, 2‐(4‐((4‐acetylphenyl)diazenyl)phenylamino)ethanol (ADPE), ADPE/MGRPE was investigated. The modified electrode showed high electrocatalytic activity toward oxadiargyl. The apparent electron transfer rate constant (ks) and charge transfer coefficient (α) between electrode and ADPE were 1.16 s?1 and 0.41, respectively. The differential pulse voltammetry response of the modified graphene‐paste electrode was linear against the concentration of oxadiargyl in the range from 0.03 to 1.4 mg L?1. The limit of detection was found to be 1.3 µg L?1 (S/N=3). The practical analytical utility of this electrode was demonstrated by measurement of oxadiargyl in river water, soil and rice samples.  相似文献   

13.
《Electroanalysis》2003,15(12):1054-1059
Epinephrine (EP) could exhibit an anodic peak at a bare gold electrode, but it was very insensitive. However, when the bare gold electrode was modified with 3‐mercaptopropionic acid (3MPA) self‐assembled monolayer (3MPA SAM), the peaks of EP became more reversible and sensitive due to the accumulation and mediate efficiency of 3MPA SAM. Conditions such as solution pH, concentration of supporting electrolyte and accumulation time were optimized. Under the selected conditions (i.e., 0.02 M pH 6.8 sodium phosphate buffer, accumulation time: 2 min under open‐ circuit.), the height of the anodic peak at about 0.18 V (vs. SCE) was linear to EP concentration in the range of 2×10?7 ?1×10?6 M and 1×10?6?5×10?4 M with correlation coefficient of 0.995 and 0.999, respectively. When the 3MPA/Au was further modified with cysteamine, the interference of H2O2 and BrO3? was eliminated. But the resulting electrode still suffered from the interference of ascorbic acid. This method was used to determine the content of EP in adrenaline hydrochloride injections, and the recovery was in the range of 97.0% to 105.1%.  相似文献   

14.
For the first time, nanostructured manganese dioxide was successfully electrodeposited onto an ITO (indium tin oxide) glass substrate by cyclic voltammetry (CV) method from an aqueous solution of 0.1 M Na2SO4 containing 5 × 10−3 M MnSO4. The obtained manganese dioxide‐modified ITO glass substrates were characterized by energy dispersive spectrometry (EDS), Fourier transform infrared spectrometry (FTIR) and scanning electron microscopy (SEM), respectively. All results not only proved the existence of MnO2 on an ITO glass substrate but also demonstrated that the morphology of the obtained MnO2 was greatly affected by the electrodeposition conditions. Also, this MnO2‐modified ITO electrode was systematically investigated by cyclic voltammetry (CV), chronopotentiometry and electrochemical impedance spectroscopy (EIS) in an aqueous electrolyte of 0.1 M Na2SO4. The results obtained from electrochemical measurement indicated that this developed MnO2‐modified ITO electrode has a satisfied specific capacitance value of 264 F·g−1 and exhibits excellent electrochemical stability and reversibility.  相似文献   

15.
Glassy carbon (GC) electrode modified with a self‐assembled monolayer (SAM) of 1,8,15,22‐tetraaminophthalocyanatocobalt(II) (4α‐CoIITAPc) was used for the selective and highly sensitive determination of nitric oxide (NO). The SAM of 4α‐CoIITAPc was formed on GC electrode by spontaneous adsorption from DMF containing 1 mM 4α‐CoIITAPc. The SAM showed two pairs of well‐defined redox peaks corresponding to CoIII/CoII and CoIIIPc?1/CoIIIPc?2 in 0.2 M phosphate buffer (PB) solution (pH 2.5). The SAM modified electrode showed excellent electrocatalytic activity towards the oxidation of nitric oxide (NO) by enhancing its oxidation current with 310 mV less positive potential shift when compared to bare GC electrode. In amperometric measurements, the current response for NO oxidation was linearly increased in the concentration range of 3×10?9 to 30×10?9 M with a detection limit of 1.4×10?10 M (S/N=3). The proposed method showed a better recovery for NO in human blood serum samples.  相似文献   

16.
The electrochemical behavior of p‐tert‐butyl‐sulfonylcalix[4]arene (SCA) has been investigated by cyclic voltammetry. The results show that there is an irreversible electrochemical oxidative wave when the potential ranges from 0.9 to 1.9 V versus saturated calomel electrode (SCE) in CH2Cl2 at a glassy carbon electrode. The kinetic parameters of the andic wave, such as α,n, ks, D and the diffusion activation energy (Ed), were discussed. In addition, the interaction of SCA with metal ions at the water‐air interface was also discussed by Langmuir‐Blodgett (LB) techniques. The results confirm that the selectivity of SCA as ligand for Pb2+ in monomolecular film is very high by complexation action, which provide the foundation that LB film of SCA modified glassy carbon electrode (GCE) as voltammetric sensor to detect trace amounts of Pb2+.  相似文献   

17.
We report a simple and effective strategy for fabrication of the nanocomposite containing chitosan (CS) and multiwall carbon nanotube (MWNT) coated on a glassy carbon electrode (GCE). The characterization of the modified electrode (CS‐MWNT/GC) was carried out using scanning electron microscopy (SEM) and UV–vis absorption spectroscopy. The electrochemical behavior of CS‐MWNT/GC electrode was investigated and compared with the electrochemical behavior of chitosan modified GC (CS/GC), multiwalled carbon nanotube modified GC (MWNT/GC) and unmodified GC using cyclic voltammetry (CV) and electron impedance spectroscopy (EIS). The chitosan films are electrochemically inactive; similar background charging currents are observed at bare GC. The chitosan films are permeable to anionic Fe(CN)63?/4? (FC) redox couple. Electrochemical parameters, including apparent diffusion coefficient for the Fe(CN)63?/4? redox probe at FC/CS‐MWNT/GC electrode is comparable to values reported for cast chitosan films. This modified electrode also showed electrocatalytic effect for the simultaneous determination of D‐penicillamine (D‐PA) and tryptophan (Trp). The detection limit of 0.9 μM and 4.0 μM for D‐PA and Trp, respectively, makes this nanocomposite very suitable for determination of them with good sensitivity.  相似文献   

18.
《中国化学会会志》2018,65(6):743-749
A glassy carbon electrode (GCE) modified with a copper‐based metal‐organic framework (MOF) [HKUST‐1, HKUST‐1 = Cu3(BTC)2 (BTC = 1,3,5‐benzenetricarboxylicacid)] was developed as a highly sensitive and simple electrochemical sensor for the determination of dopamine (DA). The MOF was prepared by a hydrothermal process, and the morphology and crystal phase of the MOF were characterized by scanning electron microscopy (SEM) and X‐ray diffraction (XRD), respectively. Meanwhile, the electrochemical performance was investigated using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). Under optimized conditions, the modified electrode showed excellent electrocatalytic activity and high selectivity toward DA. The linear response range was from 5.0 × 10−7 to 1.0 × 10−4 M and the detection limit was as low as 1.5 × 10−7 M. Moreover, the electrochemical sensor was used to detect DA in real samples with excellent results. MOF‐based sensors hold great promise for routine sensing applications in the field of electrochemical sensing.  相似文献   

19.
The SAM nanoSe0/Vc/SeCys‐film modified Au electrode has been prepared to determine selenocystine and selenomethionine. The AFM and SEM showed the special three‐dimensional (3D) network structure of the sol‐gel films. The affinity between nanoparticles and biomolecules created special chemical characters analyzed by the XRD and fluorescence. The modified electrode was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The modified films partly had resistance in the charge transduction of Fe(CN) , but the less electron‐transfer resistance. Differential pulse voltammetric (DPV) determination of selenoamino acids using SAM nanoSe0/Vc/SeCys‐film modified Au electrode was presented. In PBS (pH 7.0)+0.1 mol L?1 NaClO4 solution, selenoamino acids yielded a sensitive reduction peak at about +400±50 mV. The peak current had a linear relationship with the concentration of selenoamino acids in the range of 5.0×10?8–1.0×10?5 mol L?1, and a 3σ detection limit of selenoamino acids was 1.2×10?8 mol L?1. The relative standard deviation of DPV signals of 0.50×10?6 mol L?1 selenoamino acids was 3.8% (n=8) using the same electrode and was 4.4% (n=5) when using three modified electrodes prepared at different times. The content of selenoamino acids in the organo‐selenium powder were determined by DPV. The results showed 71.5 μg g?1 of SeCys and 65.1 μg g?1 of SeMet in the organo‐selenium powder.  相似文献   

20.
Phytic acid is an environment-friendly reagent for processing metals. The anticorrosion and inhibiting mechanism for phytic acid monolayers self-assembled on a brass (HSn70-1) electrode has been investigated by using electrochemical and photocurrent response methods. The electrochemical measurements indicate that phytic acid is liable to form surface complexes on the brass electrode, and the self-assembled monolayers (SAM) change the structure of the electric double-layer and shift the potential of zero charge positively. The photochemical measurement indicates that the brass electrode shows a p-type photoresponse owing to the formation of a Cu2O layer on its surface, and the presence of SAM weakens significantly the photoresponse, suggesting an excellent effect on anticorrosion, which is consistent with the EIS and polarization curve measurements. Adsorption of phytic acid was found to be typical of chemisorption, which can be reasonably described on the basis of the Langmuir isotherm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号