首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An edge coloring totalk-labeling is a labeling of the vertices and the edges of a graph G with labels{1,2,...,k}such that the weights of the edges defne a proper edge coloring of G.Here the weight of an edge is the sum of its label and the labels of its two end vertices.This concept was introduce by Brandt et al.They defnedχt(G)to be the smallest integer k for which G has an edge coloring total k-labeling and proposed a question:Is there a constant K withχt(G)≤Δ(G)+12+K for all graphs G of maximum degreeΔ(G)?In this paper,we give a positive answer for outerplanar graphs by showing thatχt(G)≤Δ(G)+12+1 for each outerplanar graph G with maximum degreeΔ(G).  相似文献   

2.
假设G=(V,E,F)是一个平面图。如果e1e2G中两条相邻边且在关联的面的边界上连续出现,那么称e1e2面相邻。图G的一个弱完备k-染色是指存在一个从VEFk色集合{1, …, K}的映射,使得任意两个相邻点,两个相邻面,两条面相邻的边,以及VEF中任意两个相关联的元素都染不同的颜色。若图G有一个弱完备k-染色,则称G是弱完备k-可染的。平面图G的弱完备色数是指G是弱完备k-可染的正整数k的最小值,记成χvefG)。2016年,Fabrici等人猜想:每个无环且无割边的连通平面图是弱完备7-可染的。证明外平面图满足猜想,即外平面图是弱完备7-可染的。  相似文献   

3.
The acyclic list chromatic number of every planar graph is proved to be at most 7. © 2002 Wiley Periodicals, Inc. J Graph Theory 40: 83–90, 2002  相似文献   

4.
《Journal of Graph Theory》2018,87(2):230-238
Thomassen proved that every planar graph G on n vertices has at least distinct L‐colorings if L is a 5‐list‐assignment for G and at least distinct L‐colorings if L is a 3‐list‐assignment for G and G has girth at least five. Postle and Thomas proved that if G is a graph on n vertices embedded on a surface Σ of genus g, then there exist constants such that if G has an L‐coloring, then G has at least distinct L‐colorings if L is a 5‐list‐assignment for G or if L is a 3‐list‐assignment for G and G has girth at least five. More generally, they proved that there exist constants such that if G is a graph on n vertices embedded in a surface Σ of fixed genus g, H is a proper subgraph of G, and ϕ is an L‐coloring of H that extends to an L‐coloring of G, then ϕ extends to at least distinct L‐colorings of G if L is a 5‐list‐assignment or if L is a 3‐list‐assignment and G has girth at least five. We prove the same result if G is triangle‐free and L is a 4‐list‐assignment of G, where , and .  相似文献   

5.
We are interested in the relation between the pathwidth of a biconnected outerplanar graph and the pathwidth of its (geometric) dual. Bodlaender and Fomin [3], after having proved that the pathwidth of every biconnected outerplanar graph is always at most twice the pathwidth of its (geometric) dual plus two, conjectured that there exists a constant c such that the pathwidth of every biconnected outerplanar graph is at most c plus the pathwidth of its dual. They also conjectured that this was actually true with c being one for every biconnected planar graph. Fomin [10] proved that the second conjecture is true for all planar triangulations. First, we construct for each p ≥ 1, a biconnected outerplanar graph of pathwidth 2p + 1 whose (geometric) dual has pathwidth p + 1, thereby disproving both conjectures. Next, we also disprove two other conjectures (one of Bodlaender and Fomin [3], implied by one of Fomin [10]. Finally we prove, in an algorithmic way, that the pathwidth of every biconnected outerplanar graph is at most twice the pathwidth of its (geometric) dual minus one. A tight interval for the studied relation is therefore obtained, and we show that all cases in the interval happen. © 2006 Wiley Periodicals, Inc. J Graph Theory 55: 27–41, 2007  相似文献   

6.
This paper proves the following result. Assume G is a triangle-free planar graph, X is an independent set of G. If L is a list assignment of G such that ◂=▸|L(v)|=4 for each vertex ◂+▸vV(G)X and ◂=▸|L(v)|=3 for each vertex vX, then G is L-colorable.  相似文献   

7.
Given lists of available colors assigned to the vertices of a graph G, a list coloring is a proper coloring of G such that the color on each vertex is chosen from its list. If the lists all have size k, then a list coloring is equitable if each color appears on at most vertices. A graph is equitably k-choosable if such a coloring exists whenever the lists all have size k. We prove that G is equitably k-choosable when unless G contains or k is odd and . For forests, the threshold improves to . If G is a 2-degenerate graph (given k ≥ 5) or a connected interval graph (other than ), then G is equitably k-choosable when . © 2003 Wiley Periodicals, Inc. J Graph Theory 44: 166–177, 2003  相似文献   

8.
The (r,d)‐relaxed coloring game is played by two players, Alice and Bob, on a graph G with a set of r colors. The players take turns coloring uncolored vertices with legal colors. A color α is legal for an uncolored vertex u if u is adjacent to at most d vertices that have already been colored with α, and every neighbor of u that has already been colored with α is adjacent to at most d – 1 vertices that have already been colored with α. Alice wins the game if eventually all the vertices are legally colored; otherwise, Bob wins the game when there comes a time when there is no legal move left. We show that if G is outerplanar then Alice can win the (2,8)‐relaxed coloring game on G. It is known that there exists an outerplanar graph G such that Bob can win the (2,4)‐relaxed coloring game on G. © 2004 Wiley Periodicals, Inc. J Graph Theory 46:69–78, 2004  相似文献   

9.
10.
A proper edge coloring of a graph G is called acyclic if there is no 2‐colored cycle in G. The acyclic edge chromatic number of G, denoted by χ(G), is the least number of colors in an acyclic edge coloring of G. In this paper, we determine completely the acyclic edge chromatic number of outerplanar graphs. The proof is constructive and supplies a polynomial time algorithm to acyclically color the edges of any outerplanar graph G using χ(G) colors. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 22–36, 2010  相似文献   

11.
An acyclic edge‐coloring of a graph is a proper edge‐coloring such that the subgraph induced by the edges of any two colors is acyclic. The acyclic chromatic index of a graph G is the smallest number of colors in an acyclic edge‐coloring of G. We prove that the acyclic chromatic index of a connected cubic graph G is 4, unless G is K4 or K3,3; the acyclic chromatic index of K4 and K3,3 is 5. This result has previously been published by Fiam?ík, but his published proof was erroneous.  相似文献   

12.
《Journal of Graph Theory》2018,88(3):521-546
Correspondence coloring, or DP‐coloring, is a generalization of list coloring introduced recently by Dvořák and Postle [11]. In this article, we establish a version of Dirac's theorem on the minimum number of edges in critical graphs [9] in the framework of DP‐colorings. A corollary of our main result answers a question posed by Kostochka and Stiebitz [15] on classifying list‐critical graphs that satisfy Dirac's bound with equality.  相似文献   

13.
Given a graph G, a total k‐coloring of G is a simultaneous coloring of the vertices and edges of G with at most k colors. If Δ(G) is the maximum degree of G, then no graph has a total Δ‐coloring, but Vizing conjectured that every graph has a total (Δ + 2)‐coloring. This Total Coloring Conjecture remains open even for planar graphs. This article proves one of the two remaining planar cases, showing that every planar (and projective) graph with Δ ≤ 7 has a total 9‐coloring by means of the discharging method. © 1999 John Wiley & Sons, Inc. J Graph Theory 31: 67–73, 1999  相似文献   

14.
The aim of this note is twofold. On the one hand, we present a streamlined version of Molloy's new proof of the bound for triangle‐free graphs G, avoiding the technicalities of the entropy compression method and only using the usual “lopsided” Lovász Local Lemma (albeit in a somewhat unusual setting). On the other hand, we extend Molloy's result to DP‐coloring (also known as correspondence coloring), a generalization of list coloring introduced recently by Dvo?ák and Postle.  相似文献   

15.
This note proves that the game chromatic number of an outerplanar graph is at most 7. This improves the previous known upper bound of the game chromatic number of outerplanar graphs. © 1999 John Wiley & Sons, Inc. J Graph Theory 30: 67–70, 1999  相似文献   

16.
A star coloring of a graph is a proper vertex‐coloring such that no path on four vertices is 2‐colored. We prove that the vertices of every bipartite planar graph can be star colored from lists of size 14, and we give an example of a bipartite planar graph that requires at least eight colors to star color. © 2008 Wiley Periodicals, Inc. J Graph Theory 60: 1–10, 2009  相似文献   

17.
1.IntroductionAplanargraphiscalledanouterplanargraph[']ifinitsplaneembeddingitsvenicescanbeplacedontheboundaryofaface.Thisfaceisusuallycalledanouterface.Anouterplanargraphissaidtobemaximumifwecannotaddanyedgetokeepitsouterplanarity.Wesupposethatallouterplanargraphsinvestigatedinthispaperaretwoconnected.Theedgesontheboundaryoftheouterfacearecalledouteredgesandotheredgesarecalledinneredgesorchords.Apathu--vconsistedofouteredgeswithd(u)23andd(v)23iscalledasinglechain.Asinglechainissaidtobetrivi…  相似文献   

18.
A dynamic coloring of a graph is a proper coloring of its vertices such that every vertex of degree more than one has at least two neighbors with distinct colors. The least number of colors in a dynamic coloring of G, denoted by χ2(G), is called the dynamic chromatic number of G. The least integer k, such that if every vertex of G is assigned a list of k colors, then G has a proper (resp. dynamic) coloring in which every vertex receives a color from its own list, is called the choice number of G, denoted by ch(G) (resp. the dynamic choice number, denoted by ch2(G)). It was recently conjectured (Akbari et al. (2009) [1]) that for any graph G, ch2(G)=max(ch(G),χ2(G)). In this short note we disprove this conjecture. We first give an example of a small planar bipartite graph G with ch(G)=χ2(G)=3 and ch2(G)=4. Then, for any integer k≥5, we construct a bipartite graph Gk such that ch(Gk)=χ2(Gk)=3 and ch2(G)≥k.  相似文献   

19.
Let G=(V, E) be a graph where every vertex vV is assigned a list of available colors L(v). We say that G is list colorable for a given list assignment if we can color every vertex using its list such that adjacent vertices get different colors. If L(v)={1, …, k} for all vV then a corresponding list coloring is nothing other than an ordinary k‐coloring of G. Assume that W?V is a subset of V such that G[W] is bipartite and each component of G[W] is precolored with two colors taken from a set of four. The minimum distance between the components of G[W] is denoted by d(W). We will show that if G is K4‐minor‐free and d(W)≥7, then such a precoloring of W can be extended to a 4‐coloring of all of V. This result clarifies a question posed in 10. Moreover, we will show that such a precoloring is extendable to a list coloring of G for outerplanar graphs, provided that |L(v)|=4 for all vV\W and d(W)≥7. In both cases the bound for d(W) is best possible. © 2009 Wiley Periodicals, Inc. J Graph Theory 60: 284‐294, 2009  相似文献   

20.
A graph is -colorable if its vertex set can be partitioned into sets , such that for each , the subgraph of induced by has maximum degree at most . The Four Color Theorem states that every planar graph is -colorable, and a classical result of Cowen, Cowen, and Woodall shows that every planar graph is -colorable. In this paper, we extend both of these results to graphs on surfaces. Namely, we show that every graph embeddable on a surface of Euler genus is -colorable and -colorable. Moreover, these graphs are also -colorable and -colorable. We also prove that every triangle-free graph that is embeddable on a surface of Euler genus is -colorable. This is an extension of Grötzsch's Theorem, which states that triangle-free planar graphs are -colorable. Finally, we prove that every graph of girth at least 7 that is embeddable on a surface of Euler genus is -colorable. All these results are best possible in several ways as the girth condition is sharp, the constant maximum degrees cannot be improved, and the bounds on the maximum degrees depending on are tight up to a constant multiplicative factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号