首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Constant current chronopotentiometric stripping (CPS) peak H due to catalytic hydrogen evolution reaction on Hg‐containing electrodes appeared useful in the analysis of protein complexes with single‐stranded and double‐stranded DNA as well as with peptides. In dependence on stripping current (Istr), structural transition of the protein alone or in complexes can be followed as a result of the protein exposure to electric field effects. For the first time we show here that the CPS analysis can be used for the study of the interaction of BSA with a polysaccharide namely sodium alginate (SA). BSA‐SA complex formation was accompanied by the shift of the structural transition of BSA to lower ‐Istr intensities. Another polysaccharide dextran did not alter Istr‐dependent structural transition of BSA. BSA‐SA complex can be disturbed by an electric field effect or high ionic strength confirming the electrostatic nature of BSA‐SA interaction.  相似文献   

2.
The present work reports the application of a new molybdenum disulphide (MoS2)-based electrochemical platform for highly sensitive quantitation of an iron-binding protein, bovine serum albumin (BSA). The gold screen-printed electrodes were modified with MoS2 nanoflakes, followed by bioconjugation with anti-BSA antibodies. Using the above bioelectrode, cyclic voltammetric analysis was carried out in the presence of a Fe3+/Fe2+ redox probe which exhibited a linear response of peak current with varying concentrations of BSA up to 10 ng/mL (with a detection limit of 0.006 ng/mL). This study is novel in that it shows a considerable enhancement of signal during electrochemical sensing of a protein.  相似文献   

3.
We studied native and denatured bovine serum albumin (BSA) at bare and dithiothreithol (DTT)-modified hanging mercury drop electrode (HMDE) by fast-scan cyclic voltammetry (fsCV) and chronopotentiometric stripping (CPS) to compare these methods for their ability to recognize changes in BSA structure. Using fsCV and bare HMDE, denatured BSA could be distinguished from its native form only between 10 and 20 V/s but at lower resolution than with CPS. At DTT-HMDE denatured BSA was recognized from native BSA in a wider range of scan rates suggesting new possibilities in development of voltammetric protein structure-sensitive sensing.  相似文献   

4.
Two-dimensional structures and characteristics of the complexes between sodium hyaluronate (NaHA) and bovine serum albumin (BSA) were studied by using a quartz crystal microbalance method and an atomic force microscope (AFM). NaHA did not adsorb on poly(-methyl-l-glutamate) (PMLG) film. On the other hand, the complexes adsorbed on it and the adsorption behaviors were found to be Langmuir types. With increasing weight ratio of BSA to NaHA, W BSA, the adsorption constants K decreased and the saturated adsorption masses increased. The adsorbed complexes were spherical particles and at saturated adsorption states they covered compactly on the PMLG film. The mean diameters d AFM estimated from the topographic images decreased from 70 to 54 nm with increasing W BSA. The adhesion force F ad and the frictional force F f between the complex layers and the AFM tip were obtained by using the contact mode of the AFM. With increasing W BSA, the values of F ad decreased and the values of F f increased. Compared with the frictional coefficient of the NaHA adsorption layer on the BSA monolayer, the values for the NaHA–BSA complex layer were found to be much higher.  相似文献   

5.
Previously, we have explored the mechanism of the response of BSA-protected small gold nanoclusters (Au16NCs@BSA) to silver (I) ions (Ag+) by using XPS, but the role of the ligand BSA in this response was not clear. Therefore, we used FT-IR and circular dichroism (CD) spectra to monitor the changes of the secondary structure of ligand BSA. After adding Ag+ to the AuNCs@BSA, compare with the native BSA, the ligand-BSA showed little differences in the position of main peaks but more differences in the profile of this peak in FT-IR spectra. While in CD spectra it is not only peak shape changed but also peak position. All the results showed silver ions can bind to ligand BSA, and induced their secondary structure changes. But the changes of ligand BSA are not enough to influence the fluorescence emission of AuNCs@BSA, especially for the emission of AuNCs. And BSA-protected different size gold nanoclusters have the similar changes in spatial structure of ligand BSA, but only the Au16NCs@BSA could response to Ag+, which indicated that the ligand BSA was not the key role for the special fluorescent response.  相似文献   

6.
Aiqin Gong  Yanyan Hu  Suhai Yu 《Talanta》2007,73(4):668-673
A new spectrofluorimetric method to determine epristeride (EP) has been developed, which based on the EP has a strong ability to quench the intrinsic fluorescence of bovine serum albumin (BSA). There was the relationship between the fluorescence quenching intensity of BSA (ΔF = FBSA − FBSA-EP) and the concentration EP. The quenching mechanism was investigated with the quenching type, the association constants, the number of binding sites and basic thermodynamic parameters. The method had been successfully applied to the analysis of EP in real samples and the obtained results were in good agreement with the results of official method-HPLC.  相似文献   

7.
The potencies of silica with attached groups of polyoxyethylated isooctyl phenol (SiO 2 -TX) as an adsorbent for the solid phase extraction (SPE) preconcentration of bovine serum albumin (BSA) in urine are examined. SiO2-TX is shown to effectively extract BSA (up to 96%) as an ion associate with cationic (at pH 8) and anionic (at pH 1.5) surfactants. The maximal capacity of SiO2-TX to BSA makes 33 mg/g in the presence of octylpyridinium bromide, 27 mg/g in the presence of cetyltrymethylammonium bromide or sodium dodecylsulfate with the linearity range in Henri’s area up to 23 and 20 mg/g of SiO2-TX, respectively; the distribution coefficients attain 1.8 × 103 mL/g. BSA is eluted quantitatively with 1–4 mL of acetonitrile containing NaOH, which makes possible the use of adsorbent for the reaction of protein with trifluoroethanol (TFE) before its photometric determination by the Lowry method. The influence of accompanying urine components is studied, i.e., urea, glucose, Na+, K+, Mg2+, chlorides, and phosphates, on the efficiency BSA extraction from model aqueous solutions on SiO2-TX. The detection limit for BSA makes 4 mg/L and the analytical range, from 12 to 140 mg/L.  相似文献   

8.
PbO2–CeO2 nanocomposite electrodes were prepared by pulse electrodeposition method in the lead nitrate solution containing CeO2 nanoparticles with different peak current density. The content of CeO2 nanoparticles in the electrodes increase with the increase of peak current density. The effects of peak current density on the morphology and structure of PbO2–CeO2 nanocomposite electrodes were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The SEM and XRD results show that the increase of peak current density can make the morphology finer and more compact, and the crystal size decreases with the increase of peak current density. The oxygen evolution overpotential and stability of PbO2–CeO2 nanocomposite electrodes enhance with the increase of peak current density. The electrocatalytic property of PbO2–CeO2 nanocomposite electrodes was examined for the electrochemical oxidation of rhodamine B (RhB). The results show that the RhB removal efficiency on PbO2–CeO2 nanocomposite electrodes increase with the increase of peak current density, which can be attributed to the higher oxygen evolution overpotential and CeO2 content in the composite electrodes.  相似文献   

9.
A carbon nanotube (CNT)‐modified electrode was fabricated by dropping a dispersion of multi‐walled CNTs in water‐soluble and amphiphilic phospholipid polymer with both dispersing ability and anti‐biofouling property onto a Au electrode. A poly(2‐methacryloyloxyethyl phosphorylcholine‐co‐n‐butyl methacrylate) (PMB) composed from 50 mol% of 2‐methacryloxylethyl phosphorylcholine and 50 mol% of n‐butyl methacrylate (PMB50) was used as dispersing reagent for CNTs. The dispersion of water‐insoluble material by PMB50 and its antifouling effects in electrochemical analysis were investigated. The CNT‐modified electrode showed an anodic peak potential that was shifted negatively and an increase in the current value for the electrolytic oxidation of nicotinamide adenine dinucleotide. In addition, the charge on PMB50 did not inhibit the electrochemical reaction of the redox compounds K3[Fe(CN)6], [Ru(NH3)6]Cl3, and hydroxymethylferrocene. Cyclic voltammetry of K3[Fe(CN)6] in 4 % bovine serum albumin (BSA) using a bare Au electrode, the anodic peak current was reduced to 47 % of that without BSA. In contrast, the antifouling effect of the PMB50‐coated electrode meant that the current was only reduced to 70 % of that without BSA.  相似文献   

10.
铜锌超氧化物歧化酶(Cu2Zn2SOD)在汞电极上的吸附研究   总被引:8,自引:0,他引:8  
金属氧化还原蛋白质的电化学行为作为生物电化学领域中一个重要的研究内容,受到了广泛的关注犤1~3犦,生物体系一些重要的反应均与基本电荷运动有关,如生物催化、神经传导、光合作用以及呼吸作用等均涉及到一些重要氧化还原蛋白质的氧化还原过程。利用电化学的基本原理和实验方法,不但能在生命体系和有机组织的整体水平上,更主要是能在分子和细胞水平上研究氧化还原蛋白质体系中的电子转移以及氧化态转化的化学本质和规律。铜锌超氧化物歧化酶(Cu2Zn2SOD)是一个二聚体,由两个等同的亚单位组成,每一个亚单位含有咪唑桥联的铜?和锌?离子,催…  相似文献   

11.
The interactions between bovine serum albumin (BSA) and two substituted hydroxychromone derivatives of coumarin, 3-hydroxy-7,8,9,10-tetrahydro-6H-benzo[c]chromen-6-on (C3) and 1,3-dihydroxy-7,8,9,10-tetrahy-dro-6H-benzo[c]chromen-6-on (C1.3), were investigated by fluorescence quenching spectra and UV-vis absorption spectra. It was proved that the fluorescence quenching of BSA by C3 and C1, 3 was mainly a result of the formation of C3 and C1.3-BSA complexes. The Stern-Volmer quenching constants, binding constants, binding sites and the corresponding thermodynamic parameters ΔH o, ΔS o and ΔG o at different temperatures were calculated. The results indicated that van der Waals interactions and hydrogen bonds were the predominant intermolecular forces in stabilizing each complex. The detection limits of C3 and C1.3 were 5.08 × 10−7 and 1.11 × 10−7 M in the presence of BSA, respectively.  相似文献   

12.
The electrochemical behaviors of native and thermally denatured fish DNA was investigated using boron-doped diamond (BDD) film electrode by cyclic voltammetry. The BDD electrode afforded us to measure weak current less than muA for the DNA solution in 100 microl. The mixture of acetic acid and sodium acetate solution (0.2 M) was used as a supporting electrolyte. Two oxidation peaks were observed at about +1.1 V and +1.3 V at pH 4.6 for thermally denatured fish DNA. This is due to the oxidation of guanine and adenine in the denatured fish DNA, respectively. In contrast, the native fish DNA showed ill-defined peaks at +1.1 V. Furthermore, the electrochemical behaviors of thermally denatured fish DNA were studied in the presence of cytosine, cytidine, cytidine-5-monophosphate, tetrakis(1-methypyridinium-4-yl)porphyrin (H(2)(TMPyP)(4+)) and Ru(II)(TMPyP)(4+). The oxidation peak intensity at +1.1 V gradually decreased with the increase of the concentrations of the above compounds. Based on the above studies, electrochemical behaviors of the thermally denatured fish DNA at BDD electrode is discussed.  相似文献   

13.
边六交  杨晓燕 《中国化学》2006,24(5):653-659
Based on three-state renaturation process of denatured proteins, an equation describing the effect of denaturant concentration on renaturation yield of denatured proteins was presented. By this equation, two parameters n(m1 -m2) and Ka can be obtained. The former indicates the difference in the number of denaturant molecules between the renaturation process of n number of refolding intermediates from refolding intermediate state to native state and their aggregate process from refolding intermediate state to aggregate state, the latter denotes the apparent aggregate equilibrium constant for protein molecules aggregated from native state to aggregate state, and from them, the characteristics of the renaturation process of denatured proteins in denaturant solution can be identified. This equation was tested by the renaturation processes of denatured egg white lysozyme in guanidine hydrochloride and urea solutions, with the results to show that when guanidine hydrochloride and urea concentrations were separately higher than 1.25 and 3.00 mol/L or separately lower than 1.00 and 3.00 mol/L, the refolding intermediates of egg white lysozymes were more easily aggregated to aggregate state or more easily renatured to native state, respectively. Under different initial total egg white lysozyme concentrations in urea solution, the refolding egg white lysozyme intermediates could be deduced to have a tendency to form a bimolecular intermediate aggregate, and this inference was further confirmed by their nonreducing SDS-PAGE and size exclusion chromatography.  相似文献   

14.
Reaction of native and thermally denatured bovine serum albumin (BSA) with carbonate radical anion (CO3) has been studied using pulse radiolysis technique. Scavenging of CO3 by native BSA and consequent electron transfer from tyrosine to tryptophan radical has been observed to occur with almost same rate constant (k∼1.7×108 dm3 mol−1 s−1) at pH 8.8. Effect of structural changes, due to thermal denaturation, on scavenging of CO3 and the electron transfer process have been studied and discussed in this paper.  相似文献   

15.
Nanoporous iron (hydr)oxide electrodes are evaluated as phosphate sensors using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The intensity of the reduction peak current (Icp) of the ferrihydrite working electrode is tied to phosphate concentration at low pH; however, a hematite electrode combined with the use of EIS provided reliable sensing data at multiple pH values. Nanoporous hematite working electrodes produced an impedance phase component (θ) that shifts with increasing phosphate, and, at chosen frequencies, θ values were fitted for the range 1 nM to 0.1 mM phosphate at pH 4 and pH 7 in 5 mM NaClO4.  相似文献   

16.
The effect of glucose (0–15 mass%) on the kinetics of bovine serum albumin (BSA) denatured aggregation at high concentration in aqueous solution has been studied by differential scanning calorimetry. The observed denatured aggregation process was irreversible and could be characterized by a denaturation temperature (T m), apparent activation energy (E a), the approximate order of reaction, and pre-exponential factor (A). As the glucose concentration increased from 0 to 15 mass%, T m increased, E a also increased from 514.59409±6.61489 to 548.48611±7.81302 kJ mol−1, and A/s−1 increased from 1.24239E79 to 5.59975E83. The stabilization increased with an increasing concentration of glucose, which was attributed to its ability to alter protein denatured aggregation kinetics. The kinetic analysis was carried out using a composite procedure involving the iso-conversional method and the master plots method. The iso-conversional method indicated that denatured aggregation of BSA in the presence and absence of glucose should conform to single reaction model. The master plots method suggested that the simple order reaction model best describe the process. This study shows the combination of iso-conversional method and the master plots method can be used to quantitatively model the denatured aggregation mechanism of the BSA in the presence and absence of glucose.  相似文献   

17.
Immobilization of protein molecules is a fundamental problem for scanning tunnelling microscopy (STM) measurements with high resolution. In this paper, an electrochemical method has been proved to be an effective way to fix native horseradish peroxidase (HRP) as well as inactivated HRP from electrolyte onto a highly oriented pyrolytic graphite (HOPG) surface. This preparation is suitable for both ex situ and in situ electrochemical STM (ECSTM) measurements. In situ STM has been successfully employed to observe totally different structures of HRP in three typical cases: (1) in situ ECSTM reveals an oval-shaped pattern for a single molecule in neutral buffer solution, which is in good agreement with the dimension determined as 6.2×4.3×1.2. nm3 by ex situ STM for native HRP; (2) in situ ECSTM shows that the adsorbed HRP molecules on HOPG in a denatured environment exhibit swelling globes at the beginning and then change into a V-shaped pattern after 30 min; (3) in situ ECSTM reveals a black hole in every ellipsoidal sphere for inactivated HRP in strong alkali solution. The cyclic voltammetry results indicate that the absorbed native HRP can directly catalyse the reduction of hydrogen peroxide, demonstrating that a direct electron transfer reduction occurred between the enzyme and HOPG electrode, whereas the corresponding cyclic voltammograms for denatured HRP and inactivated HRP adsorbed on HOPG electrodes indicate a lack of ability to catalyse H2O2 reduction, which confirms that the HRP molecules lost their biological activity. Obviously, electrochemical results powerfully support in situ STM observations.  相似文献   

18.
In recent years, there has been a rapid expansion in the use of radio nuclides for therapeutic purposes. Thulium–167 is an important radionuclide (T 1/2 = 9.25 d) due to it could be used for tumor and bone studies in nuclear medicine. 167Tm complexed with hydroxy ethylene diamine tetra-acetic acid (HEDTA) could be used with the aim of bone imaging. 167Tm emits a prominent γ ray of 208 keV energy and low energy electrons. This study describes calculations on the excitation functions of 165Ho(α,2n)167Tm, 167Er(p,n)167Tm, natEr(d,xn)167Tm and natEr(p,xn)167Tm reactions by ALICE/ASH (hybrid and GDH models) and TALYS-1.0 codes. In addition, calculated data by codes were compared to experimental data that earlier were published and TENDL-2010 database. Moreover, optimal thickness of the targets and physical yield were obtained by SRIM (stopping and range of ions in matter) code for each reaction. According to the results, the 167Er(p,n)167Tm and 165Ho(α,2n)167Tm reactions are suggested as the best method to produce 167Tm owing to minimum impurities. The TALYS-1.0 code, predict the maximum cross-section of about 382 mb at 11 MeV and 849 mb at 26 MeV for 167Er(p,n)167Tm and 165Ho(α,2n)167Tm reactions, respectively. Finally, deposition of natEr2O3 on Cu substrate was carried out via the sedimentation method. The 516 mg of erbium(III)oxide with 103.2 mg of ethyl cellulose and 8 mL of acetone were used to prepare a natEr2O3 layer of 11.69 cm2. 167Tm was produced via the natEr(p,n)167Tm nuclear process at 20 μA current and 15 → 7 MeV protons beam (1 h). Yield of about 3.2 MBq 167Tm per μA h were experimentally obtained.  相似文献   

19.
A novel enzyme immobilization technique based on thionine‐bovine serum albumin conjugate (Th‐BSA) and gold colloidal nanoparticles (nano‐Au) was developed. Thionine was covalently bound onto the BSA film with glutaraldehyde(GA) as cross‐linker to achieve Th‐BSA conjugate. The free amino groups of thionine were then used to attach nano‐Au for the immobilization of horseradish peroxidase (HRP). Such nano‐Au/Th‐BSA matrix shows a favorable microenvironment for retaining the native activity of the immobilized HRP and thionine immobilized in this way can effectively shuttle electrons between the electrode and the enzyme. The proposed biosensor displays excellent catalytic activity and rapid response for H2O2. The linear range for the determination of H2O2 is from 4.9×10?7 to 1.6×10?3 M with a detection limit of 2.1×10?7 M at 3σ and a Michaelies‐Menten constant K value of 0.023 mM.  相似文献   

20.
Interaction of polyacrylic acid (PAA) with bovine serum albumin (BSA) at different pH values and in a wide range of mixing molar ratios, γ = nBSA/nPAA, of components was investigated by size-exclusion high performance liquid chromatography with on-line refractive index, UV, light scattering and viscometer detectors. The results revealed the formation of stable water-soluble polymer-protein complexes at pH 5.0. For the soluble complexes thus formed, the number of the bound BSA molecules with one PAA molecule was expressed by a Langmuir-type equation as a function of the amount of excess BSA existing free in the solution. At saturation, one BSA molecule is bound to about 48 acrylic acid residues.The γ-dependencies of molecular properties and structural parameters (molecular weights, molecular-weight distribution, radius of gyration, and the Mark-Houwink equation constants) of aqueous solutions of polycomplex particles have been studied. It has been concluded from these results that the complex molecule is formed by the molecular association-dissociation processes between particles depending on protein molecules in mixtures. We assume that side-by-side association of BSA-PAA complex particles took place at γ ? 5. At γ > 5, dissociation of the aggregates occurred by the including certain protein molecules into composition and by the compactization of polycomplex particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号