首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A graph G is 1‐Hamilton‐connected if G?x is Hamilton‐connected for every xV(G), and G is 2‐edge‐Hamilton‐connected if the graph G+ X has a hamiltonian cycle containing all edges of X for any X?E+(G) = {xy| x, yV(G)} with 1≤|X|≤2. We prove that Thomassen's conjecture (every 4‐connected line graph is hamiltonian, or, equivalently, every snark has a dominating cycle) is equivalent to the statements that every 4‐connected line graph is 1‐Hamilton‐connected and/or 2‐edge‐Hamilton‐connected. As a corollary, we obtain that Thomassen's conjecture implies polynomiality of both 1‐Hamilton‐connectedness and 2‐edge‐Hamilton‐connectedness in line graphs. Consequently, proving that 1‐Hamilton‐connectedness is NP‐complete in line graphs would disprove Thomassen's conjecture, unless P = NP. © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 241–250, 2012  相似文献   

2.
In the edge precoloring extension problem, we are given a graph with some of the edges having preassigned colors and it has to be decided whether this coloring can be extended to a proper k‐edge‐coloring of the graph. In list edge coloring every edge has a list of admissible colors, and the question is whether there is a proper edge coloring where every edge receives a color from its list. We show that both problems are NP‐complete on (a) planar 3‐regular bipartite graphs, (b) bipartite outerplanar graphs, and (c) bipartite series‐parallel graphs. This improves previous results of Easton and Parker 6 , and Fiala 8 . © 2005 Wiley Periodicals, Inc. J Graph Theory 49: 313–324, 2005  相似文献   

3.
We consider the class of I‐graphs I(n,j,k), which is a generalization over the class of the generalized Petersen graphs. We study different properties of I‐graphs, such as connectedness, girth, and whether they are bipartite or vertex‐transitive. We give an efficient test for isomorphism of I‐graphs and characterize the automorphism groups of I‐graphs. Regular bipartite graphs with girth at least 6 can be considered as Levi graphs of some symmetric combinatorial configurations. We consider configurations that arise from bipartite I‐graphs. Some of them can be realized in the plane as cyclic astral configurations, i.e., as geometric configurations with maximal isometric symmetry. © 2005 Wiley Periodicals, Inc.  相似文献   

4.
A theorem of Mader states that highly connected subgraphs can be forced in finite graphs by assuming a high minimum degree. We extend this result to infinite graphs. Here, it is necessary to require not only high degree for the vertices but also high vertex‐degree (or multiplicity) for the ends of the graph, that is, a large number of disjoint rays in each end. We give a lower bound on the degree of vertices and the vertex‐degree of the ends which is quadratic in k, the connectedness of the desired subgraph. In fact, this is not far from best possible: we exhibit a family of graphs with a degree of order 2k at the vertices and a vertex‐degree of order k log k at the ends which have no k‐connected subgraphs. Furthermore, if in addition to the high degrees at the vertices, we only require high edge‐degree for the ends (which is defined as the maximum number of edge‐disjoint rays in an end), Mader's theorem does not extend to infinite graphs, not even to locally finite ones. We give a counterexample in this respect. But, assuming a lower bound of at least 2k for the edge‐degree at the ends and the degree at the vertices does suffice to ensure the existence (k + 1)‐edge‐connected subgraphs in arbitrary graphs. © 2006 Wiley Periodicals, Inc. J Graph Theory 54: 331–349, 2007  相似文献   

5.
We present an expected polynomial time algorithm to generate an unlabeled connected cubic planar graph uniformly at random. We first consider rooted connected cubic planar graphs, i.e., we count connected cubic planar graphs up to isomorphisms that fix a certain directed edge. Based on decompositions along the connectivity structure, we derive recurrence formulas for the exact number of rooted cubic planar graphs. This leads to rooted 3‐connected cubic planar graphs, which have a unique embedding on the sphere. Special care has to be taken for rooted graphs that have a sense‐reversing automorphism. Therefore we introduce the concept of colored networks, which stand in bijective correspondence to rooted 3‐connected cubic planar graphs with given symmetries. Colored networks can again be decomposed along the connectivity structure. For rooted 3‐connected cubic planar graphs embedded in the plane, we switch to the dual and count rooted triangulations. Since all these numbers can be evaluated in polynomial time using dynamic programming, rooted connected cubic planar graphs can be generated uniformly at random in polynomial time by inverting the decomposition along the connectivity structure. To generate connected cubic planar graphs without a root uniformly at random, we apply rejection sampling and obtain an expected polynomial time algorithm. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2008  相似文献   

6.
It is well known that the edge-connectivity of a simple, connected, vertex-transitive graph attains its regular degree. It is then natural to consider the relationship between the graph’s edge-connectivity and the number of orbits of its automorphism group. In this paper, we discuss the edge connectedness of graphs with two orbits of the same size, and characterize when these double-orbit graphs are maximally edge connected and super-edge-connected. We also obtain a sufficient condition for some double-orbit graphs to be λ-optimal. Furthermore, by applying our results we obtain some results on vertex/edge-transitive bipartite graphs, mixed Cayley graphs and half vertex-transitive graphs.  相似文献   

7.
We determine an asymptotic formula for the number of labelled 2‐connected (simple) graphs on n vertices and m edges, provided that mn and m = O(nlog n) as n. This is the entire range of m not covered by previous results. The proof involves determining properties of the core and kernel of random graphs with minimum degree at least 2. The case of 2‐edge‐connectedness is treated similarly. We also obtain formulae for the number of 2‐connected graphs with given degree sequence for most (“typical”) sequences. Our main result solves a problem of Wright from 1983. © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2013  相似文献   

8.
Suppose the edges of a graph G are assigned 3‐element lists of real weights. Is it possible to choose a weight for each edge from its list so that the sums of weights around adjacent vertices were different? We prove that the answer is positive for several classes of graphs, including complete graphs, complete bipartite graphs, and trees (except K2). The argument is algebraic and uses permanents of matrices and Combinatorial Nullstellensatz. We also consider a directed version of the problem. We prove by an elementary argument that for digraphs the answer to the above question is positive even with lists of size two. © 2008 Wiley Periodicals, Inc. J Graph Theory 60: 242–256, 2009  相似文献   

9.
Switching about a vertex in a digraph means to reverse the direction of every edge incident with that vertex. Bondy and Mercier introduced the problem of whether a digraph can be reconstructed up to isomorphism from the multiset of isomorphism types of digraphs obtained by switching about each vertex. Since the largest known nonreconstructible oriented graphs have eight vertices, it is natural to ask whether there are any larger nonreconstructible graphs. In this article, we continue the investigation of this question. We find that there are exactly 44 nonreconstructible oriented graphs whose underlying undirected graphs have maximum degree at most 2. We also determine the full set of switching‐stable oriented graphs, which are those graphs for which all switchings return a digraph isomorphic to the original.  相似文献   

10.
The topological approach to the study of infinite graphs of Diestel and KÜhn has enabled several results on Hamilton cycles in finite graphs to be extended to locally finite graphs. We consider the result that the line graph of a finite 4‐edge‐connected graph is hamiltonian. We prove a weaker version of this result for infinite graphs: The line graph of locally finite, 6‐edge‐connected graph with a finite number of ends, each of which is thin, is hamiltonian.  相似文献   

11.
《Discrete Mathematics》1985,55(2):151-159
In this paper we continue the investigation of the class of edge intersection graphs of a collection of paths in a tree (EPT graphs) where two paths edge intersect if they share an edge. The class of EPT graphs differs from the class known as path graphs, the latter being the class of vertex intersection graphs of paths in a tree. A characterization is presented here showing when a path graph is an EPT graph. In particular, the classes of path graphs and EPT graphs coincide on trees all of whose vertices have degree at most 3. We then prove that it is an NP-complete problem to recognize whether a graph is an EPT graph.  相似文献   

12.
An edge‐operation on a graph G is defined to be either the deletion of an existing edge or the addition of a nonexisting edge. Given a family of graphs , the editing distance from G to is the smallest number of edge‐operations needed to modify G into a graph from . In this article, we fix a graph H and consider Forb(n, H), the set of all graphs on n vertices that have no induced copy of H. We provide bounds for the maximum over all n‐vertex graphs G of the editing distance from G to Forb(n, H), using an invariant we call the binary chromatic number of the graph H. We give asymptotically tight bounds for that distance when H is self‐complementary and exact results for several small graphs H. © 2008 Wiley Periodicals, Inc. J Graph Theory 58:123–138, 2008  相似文献   

13.
It is well known that the edge-connectivity of a simple, connected, vertex transitive graph attains its regular degree. It is then natural to consider the relationship between the graph’s edge connectivity and the number of orbits of its automorphism group. In [6], Liu and Meng (2008) studied the edge connectivity of regular double-orbits graphs. Later, Lin et al. (in press) [10] characterized the λ′-optimal 3-regular double-orbit graph and given a sufficient condition for the k-regular double-orbit graphs to be optimal. In this note, we characterize the super restricted edge connected k-regular double-orbit graphs with grith at least 6.  相似文献   

14.
15.
By Petersen's theorem, a bridgeless cubic graph has a 2‐factor. H. Fleischner extended this result to bridgeless graphs of minimum degree at least three by showing that every such graph has a spanning even subgraph. Our main result is that, under the stronger hypothesis of 3‐edge‐connectivity, we can find a spanning even subgraph in which every component has at least five vertices. We show that this is in some sense best possible by constructing an infinite family of 3‐edge‐connected graphs in which every spanning even subgraph has a 5‐cycle as a component. © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 37–47, 2009  相似文献   

16.
In this article, we introduce and study the properties of some target graphs for 2‐edge‐colored homomorphism. Using these properties, we obtain in particular that the 2‐edge‐colored chromatic number of the class of triangle‐free planar graphs is at most 50. We also show that it is at least 12.  相似文献   

17.
Gallai‐colorings of complete graphs—edge colorings such that no triangle is colored with three distinct colors—occur in various contexts such as the theory of partially ordered sets (in Gallai's original paper), information theory and the theory of perfect graphs. A basic property of Gallai‐colorings with at least three colors is that at least one of the color classes must span a disconnected graph. We are interested here in whether this or a similar property remains true if we consider colorings that do not contain a rainbow copy of a fixed graph F. We show that such graphs F are very close to bipartite graphs, namely, they can be made bipartite by the removal of at most one edge. We also extend Gallai's property for two infinite families and show that it also holds when F is a path with at most six vertices.  相似文献   

18.
Let G be a graph. For each vertex vV(G), Nv denotes the subgraph induces by the vertices adjacent to v in G. The graph G is locally k‐edge‐connected if for each vertex vV(G), Nv is k‐edge‐connected. In this paper we study the existence of nowhere‐zero 3‐flows in locally k‐edge‐connected graphs. In particular, we show that every 2‐edge‐connected, locally 3‐edge‐connected graph admits a nowhere‐zero 3‐flow. This result is best possible in the sense that there exists an infinite family of 2‐edge‐connected, locally 2‐edge‐connected graphs each of which does not have a 3‐NZF. © 2003 Wiley Periodicals, Inc. J Graph Theory 42: 211–219, 2003  相似文献   

19.
The Matching‐Cut problem is the problem to decide whether a graph has an edge cut that is also a matching. Previously this problem was studied under the name of the Decomposable Graph Recognition problem, and proved to be ‐complete when restricted to graphs with maximum degree four. In this paper it is shown that the problem remains ‐complete for planar graphs with maximum degree four, answering a question by Patrignani and Pizzonia. It is also shown that the problem is ‐complete for planar graphs with girth five. The reduction is from planar graph 3‐colorability and differs from earlier reductions. In addition, for certain graph classes polynomial time algorithms to find matching‐cuts are described. These classes include claw‐free graphs, co‐graphs, and graphs with fixed bounded tree‐width or clique‐width. © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 109–126, 2009  相似文献   

20.
Let γ(G) be the domination number of graph G, thus a graph G is k‐edge‐critical if γ (G) = k, and for every nonadjacent pair of vertices u and υ, γ(G + uυ) = k?1. In Chapter 16 of the book “Domination in Graphs—Advanced Topics,” D. Sumner cites a conjecture of E. Wojcicka under the form “3‐connected 4‐critical graphs are Hamiltonian and perhaps, in general (i.e., for any k ≥ 4), (k?1)‐connected, k‐edge‐critical graphs are Hamiltonian.” In this paper, we prove that the conjecture is not true for k = 4 by constructing a class of 3‐connected 4‐edge‐critical non‐Hamiltonian graphs. © 2005 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号