共查询到20条相似文献,搜索用时 0 毫秒
1.
Elsa Sánchez-García Marc Studentkowski Luis A Montero Wolfram Sander 《Chemphyschem》2005,6(4):618-624
The complexes formed by noncovalent interactions between formic acid and dimethyl ether are investigated by ab initio methods and characterized by matrix isolation spectroscopy. Six complexes with binding energies between -2.26 and -7.97 kcal mol(-1) (MP2/cc-pVTZ+zero point vibrational energy+basis set superposition erros) are identified. The two strongest bound complexes are, within a range of 0.3 kcal mol(-1), isoenergetic. The binding in these six dimers can be described in terms of OH...O, C=O...H, C-O...H and CH...O interactions. Matrix isolation spectroscopy allowed to characterize the two strongest bound complexes by their infrared spectra. 相似文献
2.
Dr. Hans Peter Reisenauer M. Sc. J. Philipp Wagner Prof. Dr. Peter R. Schreiner 《Angewandte Chemie (International ed. in English)》2014,53(44):11766-11771
Carbonic acid (H2CO3), an essential molecule of life (e.g., as bicarbonate buffer), has been well characterized in solution and in the solid state, but for a long time, it has eluded its spectral characterization in the gas phase owing to a lack of convenient preparation methods; microwave spectra were recorded only recently. Here we present a novel and general method for the preparation of H2CO3 and its monomethyl ester (CH3OCO2H) through the gas‐phase pyrolysis of di‐tert‐butyl and tert‐butyl methyl carbonate, respectively. H2CO3 and CH3OCO2H were trapped in noble‐gas matrices at 8 K, and their infrared spectra match those computed at high levels of theory [focal point analysis beyond CCSD(T)/cc‐pVQZ] very well. Whereas the spectra also perfectly agree with those of the vapor phase above the β‐polymorph of H2CO3, this is not true for the previously reported α‐polymorph. Instead, the vapor phase above α‐H2CO3 corresponds to CH3OCO2H, which sheds new light on the research that has been conducted on molecular H2CO3 over the last decades. 相似文献
3.
4.
5.
6.
Bart Michielsen Wouter A. Herrebout Prof. Dr. Benjamin J. van der Veken Prof. Dr. 《Chemphyschem》2008,9(12):1693-1701
The complex of halothane (CF3CBrClH) with ([D3])methyl fluoride is investigated theoretically by means of ab initio calculations at the MP2/6‐311++G(d,p) level and experimentally by infrared spectroscopy of solutions in liquid krypton. The complexation energy is calculated to be ?12.5 kJ mol?1. The dipole moment of halothane monomer as a function of the C? H stretching coordinate is calculated with different methodologies and the value of (?μ/?Q1)0 is found to be positive. In the spectra, formation of a 1:1 complex is observed. The standard complexation enthalpy is measured to be ?8.4(2) kJ mol?1. The C? H stretching vibration of halothane shows a blueshift of +15.4 cm?1 on complexation, and its infrared intensity ratio εcomplex/εmonomer is found to be 1.39(7). The frequency shift is analyzed by a Morokuma analysis, and the infrared intensities are rationalized by using a model which includes the mechanical and electrical anharmonicity of the C? H stretching vibration. 相似文献
7.
8.
Leszek Lapinski Maciej J. Nowak Jacek Nowacki Michat F. Rode Andrzej L. Sobolewski Prof. 《Chemphyschem》2009,10(13):2290-2295
The occurrence of photoinduced hydrogen atom transfer between two remote spots of a molecule is experimentally demonstrated. This photoprocess involves the intermediacy of an intramolecular “crane”. In an experimental case study, 7‐hydroxy‐4‐methylquinoline‐8‐carbaldehyde monomers isolated in low‐temperature Ar matrices are investigated. On UV (λ>295 nm) irradiation, a hydrogen atom is transferred from the O7H group to the N1 atom of the quinoline ring. Subsequent irradiation with UV (λ>360 nm) light reveals that the phototransformation is partially photoreversible. In the studied hydrogen‐atom‐transfer process, the exocyclic carbaldehyde group plays the role of an intramolecular crane. The possible application of systems analogous to 7‐hydroxy‐4‐methylquinoline‐8‐carbaldehyde as optically driven molecular switches is discussed. 相似文献
9.
10.
Surajit Maity Mridula Guin Dr. Prashant Chandra Singh Prof. G. Naresh Patwari 《Chemphyschem》2011,12(1):26-46
Molecules with multiple hydrogen bonding sites offer the opportunity to investigate competitive hydrogen bonding. Such an investigation can become quite interesting, particularly when the molecule of interest has neither lone‐pair electrons nor strongly acidic/basic groups. Phenylacetylene is one such molecule with three hydrogen bonding sites that cannot be ranked into any known hierarchical pattern. Herein we review the structures of several binary complexes of phenylacetylene investigated using infrared optical double‐resonance spectroscopy in combination with high‐level ab initio methods. The diversity of intermolecular structures formed by phenylacetylene with various reagents is remarkable. The nature of intermolecular interaction with various reagents is the result of a subtle balance between various configurations and competition between the electrostatic and dispersion energy terms, while trying to maximize the total interaction strength. 相似文献
11.
《Acta Crystallographica. Section C, Structural Chemistry》2018,74(10):1068-1078
An unpredicted fourfold screw N—H…O hydrogen bond C(4) motif in a primary dicarboxamide (trans‐cyclohexane‐1,4‐dicarboxamide, C8H14N2O2) was investigated by single‐crystal X‐ray diffraction and IR and Raman spectroscopies. Electron‐density topology and intermolecular energy analyses determined from ab initio calculations were employed to examine the influence of weak C—H…O hydrogen‐bond interactions on the peculiar arrangement of molecules in the tetragonal P43212 space group. In addition, the way in which the co‐operative effects of those weak bonds might modify their relative influence on molecular packing was estimated from cluster calculations. Based on the results, a structural model is proposed which helps to rationalize the unusual fourfold screw molecular arrangement. 相似文献
12.
Qingzhong Li Dr. Qingquan Lin Wenzuo Li Jianbo Cheng Baoan Gong Jiazhong Sun 《Chemphyschem》2008,9(15):2265-2269
Ab initio calculations are used to provide information on H3N???XY???HF triads (X, Y=F, Cl, Br) each having a halogen bond and a hydrogen bond. The investigated triads include H3N???Br2‐HF, H3N???Cl2???HF, H3N???BrCI???HF, H3N???BrF???HF, and H3N???ClF???HF. To understand the properties of the systems better, the corresponding dyads are also investigated. Molecular geometries, binding energies, and infrared spectra of monomers, dyads, and triads are studied at the MP2 level of theory with the 6‐311++G(d,p) basis set. Because the primary aim of this study is to examine cooperative effects, particular attention is given to parameters such as cooperative energies, many‐body interaction energies, and cooperativity factors. The cooperative energy ranges from ?1.45 to ?4.64 kcal mol?1, the three‐body interaction energy from ?2.17 to ?6.71 kcal mol?1, and the cooperativity factor from 1.27 to 4.35. These results indicate significant cooperativity between the halogen and hydrogen bonds in these complexes. This cooperativity is much greater than that between hydrogen bonds. The effect of a halogen bond on a hydrogen bond is more pronounced than that of a hydrogen bond on a halogen bond. 相似文献
13.
Stefan Henkel Melanie Ertelt Prof. Dr. Wolfram Sander 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(25):7585-7588
4‐Oxocyclohexa‐2,5‐dienylidene is a highly reactive triplet ground state carbene that is hydrogenated in solid H2, HD, and D2 at temperatures as low as 3 K. The mechanism of the insertion of the carbene into dihydrogen was investigated by IR and EPR spectroscopy and by kinetic studies. H or D atoms were observed as products of the reaction with H2 and D2, respectively, whereas HD produces exclusively D atoms. The hydrogenation shows a very large kinetic isotope effect and remarkable isotope selectivity, as was expected for a tunneling reaction. The experiments, therefore, provide clear evidence for both hydrogen tunneling and the rare deuterium tunneling in an intermolecular reaction. 相似文献
14.
Dirk Grote Dr. Christopher Finke Simone Kossmann Frank Neese Prof. Dr. Wolfram Sander Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2010,16(15):4496-4506
The photochemistry of 2‐iodo‐3,4,5,6‐tetrafluorophenyl azide ( 7 d ) has been investigated in argon and neon matrices at 4 K, and the products characterized by IR and EPR spectroscopy. The primary photochemical step is loss of a nitrogen molecule and formation of phenyl nitrene 1 d . Further irradiation with UV or visible light results in mixtures of 1 d with azirine 5 d ′, ketenimine 6 d ′, nitreno radical 2 d , and azirinyl radical 9 . The relative amounts of these products strongly depend on the matrix and on the irradiation conditions. Nitreno radical 2 d with a quartet ground state was characterized by EPR spectroscopy. Electronic structure calculations in combination with the experimental results allow for a detailed understanding of the properties of this unusual new type of organic high‐spin molecules. 相似文献
15.
Bakhmutova EV Bakhmutov VI Belkova NV Besora M Epstein LM Lledós A Nikonov GI Shubina ES Tomàs J Vorontsov EV 《Chemistry (Weinheim an der Bergstrasse, Germany)》2004,10(3):661-671
The interaction of [NbCp(2)H(3)] with fluorinated alcohols to give dihydrogen-bonded complexes was studied by a combination of IR, NMR and DFT methods. IR spectra were examined in the range from 200-295 K, affording a clear picture of dihydrogen-bond formation when [NbCp(2)H(3)]/HOR(f) mixtures (HOR(f) = hexafluoroisopropanol (HFIP) or perfluoro-tert-butanol (PFTB)) were quickly cooled to 200 K. Through examination of the OH region, the dihydrogen-bond energetics were determined to be 4.5+/-0.3 kcal mol(-1) for TFE (TFE = trifluoroethanol) and 5.7+/-0.3 kcal mol(-1) for HFIP. (1)H NMR studies of solutions of [NbCp(2)H(2)(B)H(A)] and HFIP in [D(8)]toluene revealed high-field shifts of the hydrides H(A) and H(B), characteristic of dihydrogen-bond formation, upon addition of alcohol. The magnitude of signal shifts and T(1) relaxation time measurements show preferential coordination of the alcohol to the central hydride H(A), but are also consistent with a bifurcated character of the dihydrogen bonding. Estimations of hydride-proton distances based on T(1) data are in good accord with the results of DFT calculations. DFT calculations for the interaction of [NbCp(2)H(3)] with a series of non-fluorinated (MeOH, CH(3)COOH) and fluorinated (CF(3)OH, TFE, HFIP, PFTB and CF(3)COOH) proton donors of different strengths showed dihydrogen-bond formation, with binding energies ranging from -5.7 to -12.3 kcal mol(-1), depending on the proton donor strength. Coordination of proton donors occurs both to the central and to the lateral hydrides of [NbCp(2)H(3)], the former interaction being of bifurcated type and energetically slightly more favourable. In the case of the strong acid H(3)O(+), the proton transfer occurs without any barrier, and no dihydrogen-bonded intermediates are found. Proton transfer to [NbCp(2)H(3)] gives bis(dihydrogen) [NbCp(2)(eta(2)-H(2))(2)](+) and dihydride(dihydrogen) complexes [NbCp(2)(H)(2)(eta(2)-H(2))](+) (with lateral hydrides and central dihydrogen), the former product being slightly more stable. When two molecules of TFA were included in the calculations, in addition to the dihydrogen-bonded adduct, an ionic pair formed by the cationic bis(dihydrogen) complex [NbCp(2)(eta(2)-H(2))(2)](+) and the homoconjugated anion pair (CF(3)COO...H...OOCCF(3))(-) was found as a minimum. It is very likely that these ionic pairs may be intermediates in the H/D exchange between the hydride ligands and the OD group observed with the more acidic alcohols in the NMR studies. 相似文献
16.
Guohai Deng Dr. Sudip Pan Dr. Jiaye Jin Prof. Dr. Guanjun Wang Prof. Lili Zhao Prof. Dr. Mingfei Zhou Prof. Gernot Frenking 《Chemistry (Weinheim an der Bergstrasse, Germany)》2021,27(1):412-418
Two structural isomers containing five second-row element atoms with 24 valence electrons were generated and identified by matrix-isolation IR spectroscopy and quantum chemical calculations. The OCBNO complex, which is produced by the reaction of boron atoms with mixtures of carbon monoxide and nitric oxide in solid neon, rearranges to the more stable OBNCO isomer on UV excitation. Bonding analysis indicates that the OCBNO complex is best described by the bonding interactions between a triplet-state boron cation with an electron configuration of (2s)0(2pσ)0(2pπ)2 and the CO/NO− ligands in the triplet state forming two degenerate electron-sharing π bonds and two ligand-to-boron dative σ bonds. 相似文献
17.
18.
19.
Klara Edel Sarah A. Brough Ashley N. Lamm Shih‐Yuan Liu Holger F. Bettinger 《Angewandte Chemie (International ed. in English)》2015,54(27):7819-7822
The BN analogue of ortho‐benzyne, 1,2‐azaborine, is generated by flash vacuum pyrolysis, trapped under cryogenic conditions, and studied by direct spectroscopic techniques. The parent BN aryne spontaneously binds N2 and CO2, thus demonstrating its highly reactive nature. The interaction with N2 is photochemically reversible. The CO2 adduct of 1,2‐azaborine is a cyclic carbamate which undergoes photocleavage, thus resulting in overall CO2 splitting. 相似文献
20.
Tuncay Karakurt Muharrem Dinçer Alaaddin Çukurovali 《International journal of quantum chemistry》2012,112(2):394-413
The molecular geometry, vibrational frequencies, and gauge including atomic orbital (GIAO) 1H‐ and 13C NMR chemical shift values of the title compound in the ground state have been calculated using the Hartree‐Fock (HF) and density functional theory (DFT) methods with 6‐31G(d) basis sets, and compared with the experimental data. The calculated results show that the optimized geometries can well reproduce the crystal structural parameters and the theoretical vibrational frequencies, and 1H‐ and 13C NMR chemical shift values show good agreement with experimental data. To determine conformational flexibility, the molecular energy profile of the title compound was obtained by semiempirical (AM1) calculations with respect to the selected torsion angle, which was varied from ?180° to +180° in steps of 10°. The energetic behavior of the title compound in solvent media was examined using the B3LYP method with the 6‐31G(d) basis set by applying the Onsager and the polarizable continuum model (PCM). The results obtained with these methods reveal that the PCM method provided more stable structure than Qnsager's method. By using TD‐DFT method, electronic absorption spectra of the title compound have been predicted and a good agreement with the TD‐DFT method and the experimental one is determined. The predicted nonlinear optical properties of the title compound are much greater than ones of urea. In addition, the molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis, NBO analysis and thermodynamic properties of the title compound were investigated using theoretical calculations. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012 相似文献