首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Alkylsilane-modified nanoporous ceramic membranes exclude water from their pores yet exhibit transmembrane electrical conductivity in aqueous electrolyte solutions. That effect was studied using impedance spectroscopy and (29)Si NMR. Anodic aluminum oxide membranes with alkylsilane-functionalized pores exhibited a transmembrane electrical resistance that increased with the length of the hydrocarbon chain. Microstructural studies revealed that the conduction was due primarily to a small number of "hydrophilically defective" pores in membranes modified by long-chain alkylsilanes and both hydrophilic defects and surface conduction in pores modified by short-chain alkylsilanes. Hydroxyl groups in short-chain alkylsilane layers act as "water wires" to enable surface ion transport. The local concentration of hydroxyl groups decreased with alkylsilane chain length, explaining the resistance trend. This constitutes the first direct evidence that alkylsilane functionalization affects electrical as well as wetting properties.  相似文献   

2.
Water molecules confined to pores with sub-nanometre diameters form single-file hydrogen-bonded chains. In such nanoscale confinement, water has unusual physical properties that are exploited in biology and hold promise for a wide range of biomimetic and nanotechnological applications. The latter can be realized by carbon and boron nitride nanotubes which confine water in a relatively non-specific way and lend themselves to the study of intrinsic properties of single-file water. As a consequence of strong water-water hydrogen bonds, many characteristics of single-file water are conserved in biological and synthetic pores despite differences in their atomistic structures. Charge transport and orientational order in water chains depend sensitively on and are mainly determined by electrostatic effects. Thus, mimicking functions of biological pores with apolar pores and corresponding external fields gives insight into the structure-function relation of biological pores and allows the development of technical applications beyond the molecular devices found in living systems. In this Perspective, we revisit results for single-file water in apolar pores, and examine the similarities and the differences between these simple systems and water in more complex pores.  相似文献   

3.
Changes in density and surface tension of water in silica pores   总被引:3,自引:0,他引:3  
 The density and surface tension of water in small pores of silicas have been investigated. These physical properties of water in the pores were calculated from a comparison of pore volumes and pore radii which were estimated from adsorption and desorption isotherms of nitrogen and water. Below a pore radius of about 5 nm both the density and the surface tension of water in the pores were smaller than those of the bulk liquid and decreased with a decrease in pore size. The density of water in the pores decreased with an increase in the concentration of surface hydroxyl groups. Similarly the surface tension of water in the pores is influenced by the surface hydroxyl groups. Anomalous changes in the density and surface tension of the water in the pores are attributed to the interaction of water molecules with surface hydroxyl groups and hydrogen-bond formation among water molecules. Received: 20 April 1999 Accepted in revised form: 17 November 1999  相似文献   

4.
The self-diffusion of water sorbed in cellulose fibers was investigatedby means of NMR during slow drying in order to follow changes in the celluloseporous structure. In pulp fibers pores with at least one dimension on them scale were observed at high amounts of sorbed water and nm-scale pores atlow amounts. Beating affected the m-scale pores. Regenerated cellulosefibers had nm-scale pores up to high amounts of water. Bulk water was observedas a second component with long T 2 in a CPMGexperiment. The sequence of water removal for kraft pulp fibers is: (1) bulkwater, (2) water in m-scale pores and (3) water in nm-scale pores.  相似文献   

5.
Poly(ethylene glycols) (PEGs) are widely used water soluble and biocompatible polymers. PEGs are suitable as paracellular probes in biomembrane permeability studies because they are hydrophilic and various oligomers have defined molecular sizes. In previous studies corneal and conjunctival permeability for neutral PEGs has been measured, and the results were used to calculate the number and size of the cellular pores. In this study we have developed a high-performance liquid chromatographic-electrospray ionization-mass spectrometric method for analysis of neutral PEGs and positively changed amino PEGs simultaneously. The new method is fast, accurate, sensitive and specific for high throughput analysis. The method was used to evaluate the paracellular permeability of PEGs through a corneal epithelial cell culture. Paracellular pores are negatively charged and it was in our interest to characterize the interactions of positive charge and size of the molecules with the paracellular pores.  相似文献   

6.
2 dimensional (2D) dodecagonal boron nitride (D_BN) and graphenylene are being investigated to understand their potential applications in water purification. First principle calculations are performed to evaluate the water purification properties of D_BN and graphenylene. It is found that Na+ exothermically adsorbs on pores in D_BN, where the transition state energy via pores is calculated to be 0.03 eV. This indicates that Na+ can pass through D_BN pores more selectively than water molecules and other ions. In contrast, in the case of graphenylene, Na+ is repelled, and H2O exothermically adsorbs on pores, where the transition state energy via pores is calculated to be 1.00 eV. Therefore, this demonstrates that D_BN exhibits an excellent potential for ion-sieving membranes, while graphenylene exhibits an excellent potential for reverse osmosis membranes. Consequently, this study provides valuable insights into the potential use of D_BN and graphenylene in water purification applications.  相似文献   

7.
A simple explanation is given for the low-temperature density minimum of water confined within cylindrical pores of ordered nanoporous materials of different pore size. The experimental evidence is based on combined data from in-situ small-angle scattering of X-rays (SAXS) and neutrons (SANS), corroborated by additional wide-angle X-ray scattering (WAXS). The combined scattering data cannot be described by a homogeneous density distribution of water within the pores, as was originally suggested from SANS data alone. A two-step density model reveals a wall layer covering approximately two layers of water molecules with higher density than the residual core water in the central part of the pores. The temperature-induced changes of the scattering signal from both X-rays and neutrons are consistent with a minimum of the average water density. We show that the temperature at which this minimum occurs depends monotonically on the pore size. Therefore we attribute this minimum to a liquid-solid transition of water influenced by confinement. For water confined in the smallest pores of only 2 nm in diameter, the density minimum is explained in terms of a structural transition of the surface water layer closest to the hydrophilic pore walls.  相似文献   

8.
The high-frequency region was used to record the absorption spectrum of water in nanoscale pores during vacuum pumping or injection of water. The wide spectral range, which included the vibration overtones, allowed to resolve the structure of the absorption bands with variation of water concentration in the pores of SiO(2). The absorption bands of water clusters in the 4570-5400 cm(-1) range consist of well-resolved sub-bands with interpeak intervals of up to 580 cm(-1). When the pore diameter is decreased from 11.8 to 2.6 nm, the absorption bands of clusters in this frequency range are shifted by 530 cm(-1) in the direction of the water monomer which indicates an increase of hydrogen bond strength in confined water with an increase of the pore diameter. The spectrum recorded during water pumping is extremely variable in time, and the cluster dynamics in large pores (11.8 nm) differs greatly from the dynamics in small pores (2.6 nm). While all types of water clusters are removed from small pores uniformly, in the case of large pores, the water clusters relating to strong hydrogen bonds are removed from the sample at the beginning of the vacuum pumping and the loosely coupled clusters are removed later. The rate of this process is not steady and varies throughout pumping.  相似文献   

9.
Melt pelletization of lactose 450 M was carried out in an 8-l high shear mixer using PEG 3000 as the meltable binder. The pore size and size distribution of the melt pellets were determined using mercury intrusion porosimetry. The pore size distribution of melt pellets was found to be bimodal. With a higher binder concentration, post-melt impeller speed or longer post-melt processing time, the fraction of large pores in the agglomerates was reduced but the tendency of the agglomerates to develop sub-micron pores increased. The extent of formation of large pores was dependent on the interplay between the inter-particle distance of lactose particles and the contraction property of molten binder. High process temperature was associated with a greater amount of water loss from the melt agglomerates. The water vapor liberated from the lactose particles, was trapped in the molten PEG during the pelletization process. The formation of sub-micron pores was a result of escape of this water vapor on solidification of the molten PEG as well as agglomerate densification. The quantity of sub-micron pores produced was found to be related to the level of water loss. The melt agglomeration gave rise to large agglomerates when long post-melt processing time, high post-melt impeller speed or binder concentration was used.  相似文献   

10.
Using grand canonical Monte Carlo (GCMC) simulations of molecular models, we investigate the nature of water adsorption and desorption in slit pores with graphitelike surfaces. Special emphasis is placed on the question of whether water exhibits capillary condensation (i.e., condensation when the external pressure is below the bulk vapor pressure). Three models of water have been considered. These are the SPC and SPC/E models and a model where the hydrogen bonding is described by tetrahedrally coordinated square-well association sites. The water-carbon interaction was described by the Steele 10-4-3 potential. In addition to determining adsorption/desorption isotherms, we also locate the states where vapor-liquid equilibrium occurs for both the bulk and confined states of the models. We find that for wider pores (widths >1 nm), condensation does not occur in the GCMC simulations until the pressure is higher than the bulk vapor pressure, P0. This is consistent with a physical picture where a lack of hydrogen bonding with the graphite surface destabilizes dense water phases relative to the bulk. For narrow pores where the slit width is comparable to the molecular diameter, strong dispersion interactions with both carbon surfaces can stabilize dense water phases relative to the bulk so that pore condensation can occur for P < P0 in some cases. For the narrowest pores studied--a pore width of 0.6 nm--pore condensation is again shifted to P > P0. The phase-equilibrium calculations indicate vapor-liquid coexistence in the slit pores for P < P0 for all but the narrowest pores. We discuss the implications of our results for interpreting water adsorption/desorption isotherms in porous carbons.  相似文献   

11.
Studies of membrane wettability in the membrane distillation process were performed with the application of hydrophobic capillary membranes made of polypropylene. Three kinds of Accurel PP membranes (Membrana GmbH, Germany) differing in the diameter of capillaries and pores as well as in the wall thickness were used. It was confirmed that membranes with lower wall thickness and larger pore size provide higher yields of the process. The studies demonstrated that the pores of used membranes located close to the external surface of capillaries are several times larger than those located inside the membrane wall. Based on air permeability measurements it was found that external surface of the membranes with such large pores was completely wetted by water after 50–80 h of membrane distillation. However, the pores located inside the wall with the diameter below 1 μm were not wetted and electrical conductivity of the obtained distillate was maintained at the level of 3–6 μS cm−1.  相似文献   

12.
The effect of various salts on the viscosity, and by implication structure, of water in polymeric membrane pores of radius approximately 1.69 nm and low charge density has been studied. Permeation of pure water and various electrolyte solutions was analyzed using the Hagen-Poiseuille equation expressed in a ratio form to exclude membrane-specific quantities such as pore radius and length. The analysis produced viscosity ratios of electrolyte to pure water inside the membrane pores. Comparing the viscosity ratios inside the pores with their bulk counterparts showed that confinement significantly increased the sensitivity of water structure to the presence of ions. It has been found that, in relative terms in the pores, Cl- was a strong structure breaker, K+ was a moderately strong structure breaker, Na+ was a weak structure breaker, SO4(2-) was a weak structure maker, and Mg2+ was a strong structure maker. Predictive modeling of membrane separation performance would benefit from such effects being taken into account in cases where the pore ion concentrations may be high.  相似文献   

13.
The effects of humidity on gas permeation were studied for five SAPO-34 membranes with different fractions of permeation through non-SAPO pores. Membranes with high CO2/CH4 separation selectivities (>20) were stable in humidified gases, but degradation was seen for some membranes after months of exposure to the laboratory atmosphere. Once the membranes started to degrade, the rate of degradation appeared to accelerate. The degradation created non-SAPO pores that were larger than the SAPO-34 pores, as indicated by i-C4H10 permeance, CO2/CH4 selectivity, and CO2 flux dependence on pressure. The effect of humidity on gas permeance correlated with these indicators of non-SAPO pores. Adsorbed water appeared to completely block the SAPO pores, but permeation through non-SAPO pores increased with humidity. Therefore, water adsorption can be used to determine membrane quality and the fraction of transport through non-SAPO pores.  相似文献   

14.
We report on an observation of the phase transition between two liquid phases of supercooled confined water in simulations. The temperature of the liquid-liquid transition of water at zero pressure slightly decreases due to confinement in the hydrophobic pore. The hydrophilic confinement affects this temperature in the opposite direction and shifts the critical point of the liquid-liquid transition to a higher pressure. As a result, in a strongly hydrophilic pore the liquid-liquid phase transition becomes continuous at zero pressure, indicating the shift of its critical point from negative to a positive pressure. These findings indicate that experimental studies of water confined in the pores of various hydrophobicity/hydrophilicity may clarify the location of the liquid-liquid critical point of bulk water.  相似文献   

15.
The dynamic properties of water confined within nanospaces are of interest given that such water plays important roles in geological and biological systems. The enthalpy‐relaxation properties of ordinary and heavy water confined within silica‐gel voids of 1.1, 6, 12, and 52 nm in average diameter were examined by adiabatic calorimetry. Most of the water was found to crystallize within the pores above about 2 nm in diameter but to remain in the liquid state down to 80 K within the pores less than about 1.6 nm in diameter. Only one glass transition was observed, at Tg=119, 124, and 132 K for ordinary water and Tg=125, 130, and 139 K for heavy water, in the 6‐, 12‐, and 52‐nm diameter pores, respectively. On the other hand, two glass transitions were observed at Tg=115 and 160 K for ordinary water and Tg=118 and 165 K for heavy water in the 1.1‐nm pores. Interfacial water molecules on the pore wall, which remain in the noncrystalline state in each case, were interpreted to be responsible for the glass transitions in the region 115–139 K, and internal water molecules, surrounded only by water molecules in the liquid state, are responsible for those at 160 or 165 K in the case of the 1.1‐nm pores. It is suggested that the glass transition of bulk supercooled water takes place potentially at 160 K or above due to the development of an energetically more stable hydrogen‐bonding network of water molecules at low temperatures.  相似文献   

16.
石墨烯是一种具有广泛应用前景的纳米材料,特别是由石墨烯片层自组装形成的二维纳米通道能够应用于物质的过滤分离.本文采用分子动力学模拟方法研究了原态石墨烯/羟基改性石墨烯狭缝孔道中水分子的微观行为,模拟计算了水的界面结构性质和扩散动力学性质,所研究的石墨烯孔宽为0.6-1.5 nm.模拟结果表明,在石墨烯狭缝孔道中,水分子受限结构呈现层状分布,在超微石墨烯孔道(0.6-0.8 nm)中水分子可形成特殊的环状有序结构,石墨烯表面可诱导产生特殊的水分子界面取向.在石墨烯孔道中,水分子的扩散运动低于主体相水分子的扩散运动,羟基化石墨烯孔道可以促使水分子的扩散能力降低.对于改性石墨烯狭缝孔道,由于羟基的作用,水分子可以自发渗入0.6 nm的石墨烯孔道内.模拟所得到的受限水分子的动力学性质与水分子在石墨烯孔道内的有序结构有关.本文研究结果将有助于分析理解水分子通过石墨烯纳米通道的渗透机理,为设计基于石墨烯的纳米膜提供理论指导.  相似文献   

17.
We report the results of molecular simulation of water in silica nanopores at full hydration and room temperature. The model systems are approximately cylindrical pores in amorphous silica, with diameters ranging from 20 to 40 ?. The filled pores are prepared using grand canonical Monte Carlo simulation and molecular dynamics simulation is used to calculate the water structure and dynamics. We found that water forms two distinct molecular layers at the interface and exhibits uniform, but somewhat lower than bulk liquid, density in the core region. The hydrogen bond density profile follows similar trends, with lower than bulk density in the core and enhancements at the interface, due to hydrogen bonds between water and surface non-bridging oxygens and OH groups. Our studies of water dynamics included translational mean squared displacements, orientational time correlations, survival probabilities in interfacial shells, and hydrogen bond population relaxation. We found that the radial-axial anisotropy in translational motion largely follows the predictions of a model of free diffusion in a cylinder. However, both translational and rotational water mobilities are strongly dependent on the proximity to the interface, with pronounced slowdown in layers near the interface. Within these layers, the effects of interface curvature are relatively modest, with only a small increase in mobility in going from the 20 to 40 ? diameter pore. Hydrogen bond population relaxation is nearly bulk-like in the core, but considerably slower in the interfacial region.  相似文献   

18.
The relative expansion of water in pores about 50 Å in size has been investigated within the temperature range of 0 to 90°C. It has been established that at a temperature higher than 70°C, the runs of curves in pores and the bulk phase coincide. This demonstrates that the structural peculiarities of water disappear at these temperatures. Comparison between the plotted curves enables one to evaluate the density of water in pores, which at room temperature differs from the bulk density by about 2%.  相似文献   

19.
A mesoporous silica gel Davidson 59 was thermally treated in vacuo, in the temperature range 20–1000°C. Effects of thermal treatment on the water contents, nitrogen surface areas, pore structure and heats of immersion in water were investigated and discussed. The temperatures selected were 20, 110, 200, 290, 380, 480, 510 and 1000°C. These temperatures were found to cover all the various textural changes resulting from the heat effect.It could be shown that the heats of immersion in water depend primarily on the water content of the sample and are proportional, at least qualitatively to the number of hydroxyl groups on the surface and their availability for interaction with liquid water. The interesting result obtained is that a second factors is involved, namely the pore structure of the adsorbent. A qualitative parallelism exists between the normalized heat of immersion per unit area, and the average pore radius. Apparently the packing of water molecules in narrow pores leads to a decrease in the heat of immersion due to repulsion between the permanent dipoles of the molecules. In narrower pores, the heat of immersion in water is smaller than in wide pores.  相似文献   

20.
Water molecules confined inside narrow pores are of great importance in understanding the structure, stability, and function of water channels. Here we report that besides the H-bonding water that structures the pore, the permanent presence of a significant, fast-moving fraction of incompletely H-bonded water molecules inside the pore should control the free entry and exit of water. This is achieved by means of complementary DSC and solid-state NMR studies. We also present compelling evidence from X-ray diffraction data that the cluster formed by six water molecules in the most stable cage-like structure is sufficiently hydrophobic to be stably adsorbed in a nonpolar environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号