首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electroanalysis》2006,18(21):2085-2091
A nanocomposite electrochemical sensing film is assembled on choline (Ch) modified glassy carbon electrode (GCE), which contains multiwalled carbon nanotubes (MWNTs), Nafion cation exchanger, and myoglobin (Mb) or hemoglobin (Hb). The MWNTs provide a 3D porous and conductive network for the enzyme immobilization and Nafion acts as polymeric binder to give cast thin films. Both MWNTs and Nafion provide negative functionalities to bind to the positively charged redox proteins and to attach at the positively charged Ch modified layer, and drive the formation of homogeneous and stable nanocomposite film, the MWNT‐Nafion‐Mb. The nanocomposite film was characterized by field emission scanning electron microscope (FE‐SEM). The Mb in the nanocomposite film showed a pair of well‐defined and nearly reversible cyclic voltammetric peaks at about ?0.32 V vs. SCE at pH 7.0 solution for the heme Fe(III)/Fe(II) redox couple. The immobilized heme proteins can display the features of peroxidase in electrocatalytic reductions of oxygen, hydrogen peroxide, nitric oxide, trichloroacetic acid (TCA), and bromate.  相似文献   

2.
A novel NH2+ ion implantation‐modified indium tin oxide (NH2/ITO) electrode was prepared. Acid‐pretreated, negatively charged MWNTs were firstly modified on the surface of NH2+ ion implantation electrode, then, positively charged Mb was adsorbed onto MWNTs films by electrostatic interaction. The assembly of MWNTs and Mb was characterized with electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The immobilized Mb showed a couple of quasireversible cyclic voltammetry peaks in pH 7.0 phosphate buffer solution (PBS). The apparent surface concentration of Mb at the electrode surface was 1.06×10?9 mol cm?2. The Mb/MWNTs/NH2/ITO electrode also gave an improved electrocatalytic activity towards the reduction of hydrogen peroxide. The catalysis currents increased linearly to the H2O2 concentration in a wide range from 9×10?7 to 9.2×10?5 M with a correlation coefficient of 0.999. The detection limit was 9.0×10?7 M. The experiment results demonstrated that the modified electrode provided a biocompatible microenvironment for protein and supplied a necessary pathway for its direct electron transfer.  相似文献   

3.
A nanobiocomposite film consisted of zirconia, multiwalled carbon nanotubes (MWNTs) and Myoglobin (Mb) was electrochemically deposited on the electrode. Direct electron transfer for the immobilized Mb was realized and high electrocatalytic efficiency toward H2O2 was observed. The proposed biosensor via a simple one‐step electrodeposition method displayed a broader linear range and a lower detection limit for H2O2, as compared with those CNT or ZrO2 based biosensor. The linear range is from 2 × 10?6 M to 1 × 10?3 M with the detection limit of 6 × 10?7 M. The present strategy provides a simple and effective method to assemble CNT, ZrO2 and enzyme nanohybrid on the electrode and expands the scope of CNT‐based electrochemical devices.  相似文献   

4.
以多壁碳纳米管(MWNTs)修饰玻碳(GC)电极为基底,自组装金纳米粒子(AuNPs)及L-半胱氨酸(L-Cys)研制杂化膜修饰电极(L-Cys/AuNPs/MWNTs/GC).实验表明,该膜修饰电极在pH=7.0的KH2PO4-K2HPO4缓冲溶液中对细胞色素c(Cyt c)的直接电子转移反应具有良好的电催化作用,C...  相似文献   

5.
Chitosan (CS) was chosen for dispersing multi‐wall carbon nanotubes (MWNTs) to form a stable CS‐MWNTs composite, which was first coated on the surface of a glassy carbon electrode to provide a containing amino groups interface for assembling colloidal gold nanoparticles (GNPs), followed by the adsorption of hemoglobin (Hb). Repeating the assembly step of GNPs and Hb resulted in {Hb/GNPs}n multilayers. The assembly of GNPs onto CS‐MWNTs composites was confirmed by transmission electron microscopy. The consecutive growth of {Hb/GNPs}n multilayers was confirmed by cyclic voltammetry and UV‐vis absorption spectroscopy. The resulting system brings a new platform for electrochemical devices by using the synergistic action of the electrocatalytic activity of GNPs and MWNTs. The resulting biosensor displays an excellent electrocatalytic activity and rapid response for hydrogen peroxide. The linear range for the determination of H2O2 was from 5.0×10?7 to 2.0×10?3 M with a detection limit of 2.1×10?7 M at 3σ and a Michaelis–Menten constant KMapp value of 0.19 mM.  相似文献   

6.
A novel composite was fabricated through dispersing multiwalled carbon nanotubes (MWNTs) in gold nanoparticle (GPs) colloid stabilized by chitosan and ionic liquid (i.e., 1‐butyl‐3‐methylimidazolium tetrafluoroborate, BMIMBF4). Transmission electron microscopy (TEM) experiment showed that the GPs highly dispersed on the MWNTs probably due to the electrostatic interaction among GPs, MWNTs and the imidazolium cation of BMIMBF4. X‐ray photoelectron spectroscopy (XPS) indicated that thus‐formed gold nanostructure was mediated by BMIMBF4. When glucose oxidase (GOD) was immobilized on the composite (MWNTs‐GPs) its ultraviolet‐visible absorption spectrum kept almost unchanged. The immobilized GOD coated glassy carbon electrode (GOD/MWNTs‐GPs/GC) exhibited a pair of well‐defined peaks in 0.10 M pH 7.0 phosphate buffer solution (PBS), with a formal potential of ?0.463 V (vs. SCE). The electrochemical process involved two‐electron transfer. The electron transfer coefficient was ca.0.56 and the electron transfer rate constant was 9.36 s?1. Furthermore, the immobilized GOD presented good catalytic activity to the oxidation of glucose in air‐saturated PBS. The Km and Im values were estimated to be 13.7 μM and 0.619 μA. The GOD/MWNTs‐GPs/GC electrode displayed good stability and reproducibility.  相似文献   

7.
Xiang C  Zou Y  Sun LX  Xu F 《Talanta》2007,74(2):206-211
A robust and effective nanohybrid film based on gold nanoparticles (GNPs)/chitosan (Chit)/multi-walled carbon nanotubes (MWNTs) was prepared by a layer-by-layer self-assembly technique. Cytochrome c (Cyt c) was successfully immobilized on the nanohybrid film modified glassy carbon (GC) electrode by cyclic voltammetry. The direct electron transfer between Cyt c and the modified electrode was investigated in detail. Cyt c shows a couple of quasi-reversible and well-defined cyclic voltammetry peaks with a formal potential (E0′) of −0.16 V (versus Ag/AgCl) in pH 7.0 phosphate buffer solution (PBS). The Cyt c/GNPs/Chit/MWNTs modified GC electrode gives an improved electrocatalytic activity towards the reduction of hydrogen peroxide (H2O2). The sensitivity is 92.21 μA mM−1 cm−2 and the calculated apparent Michaelis-Menten constant () is 0.791 mM, indicating a high-catalytic activity of Cyt c. The catalysis currents increase linearly to the H2O2 concentration in a wide range of 1.5 × 10−6 to 5.1 × 10−4 M with a correlation coefficient 0.999. The detection limit is 9.0 × 10−7 M (at the ratio of signal to noise, S/N = 3). Moreover, the modified electrode displays rapid response (5 s) to H2O2, and possesses good stability and reproducibility.  相似文献   

8.
Direct electrochemical and electrocatalytic behavior of myoglobin (Mb) immobilized on carbon paste electrode (CPE) by a silica sol-gel film derived from tetraethyl orthosilicate was investigated for the first time. Mb/sol-gel film modified electrodes show a pair of well-defined and nearly reversible cyclic voltammetric peaks for the Mb Fe(III)/Fe(II) redox couple at about -0.298 V (vs Ag/AgCl) in a pH 7.0 phosphate buffer solution. The formal potential of the Mb heme Fe(III)/Fe(II) couple shifted linearly with pH with a slope of 52.4 mV/pH, denoting that an electron transfer accompanies single-proton transportation. An FTIR and UV-vis spectroscopy study confirms that the secondary structure of Mb immobilized on an electrode by a sol-gel film still maintains the original arrangement. The immobilized Mb displays the features of a peroxidase and acts in an electrocatalytic manner in the reduction of oxygen, trichloroacetic acid (TCA), and nitrite. In comparison to other electrodes, the chemically modified electrodes used in this study for direct electrochemistry and electrocatalysis of Mb are easy to fabricate and fairly inexpensive. Consequently, the Mb/sol-gel film modified electrode provides a convenient way to perform electrochemical research on this kind of protein. It also has potential use in the fabrication of bioreactors and third-generation biosensors.  相似文献   

9.
This paper reports the use of a tetracycline (TC) sensor constructed from a combination of molecularly imprinted polymer (MIP) and gold nanoparticles modified multiwall carbon nanotubes (MWNTs‐GNPs). The results demonstrated that the amount of recognition sites in the polymer was significantly increased and the electron transfer ability of the sensor was improved. The relationship between the peak current and the TC concentration was linear in the range from 0.1 to 40 mg L?1, and the detection limit was 0.04 mg L?1 (S/N=3). The peak current to TC was 4.3, 6.2 and 6.8 times larger than that of oxytetracycline, chloramphenicol and nafcillin, respectively. Thus, the combination of MIP and MWNTs‐GNPs provides a sensitive and selective electrochemical detection method for tetracycline.  相似文献   

10.
Optically transparent and electrically conductive nanocomposite thin films consisting of multiwalled carbon nanotubes (MWCNTs), gold nanoparticles (GNPs) and myoglobin molecules that glue GNPs and MWCNTs together are fabricated for the first time on glass substrates from aqueous solution. The nanocomposite thin film is capable of varying its resistance, impedance or optical transmittance at room temperature in response to changes in ambient humidity. The conductometric sensitivity to relative humidity (RH) of the nanocomposite thin film is compared with those of the pure and Mb-functionalized MWCNT layers. The pure MWCNT layer shows a small increase in its resistance with increasing RH due to the effect of p-type semiconducting nanotubes present in the film. In contrast, a four times higher sensitivity to RH is observed for both the nanocomposite and Mb-functionalized MWCNT thin films. The sensitivity enhancement is attributable to swelling of the thin films induced by water absorption in the presence of Mb molecules, which increases the inter-nanotube spacing and thereby causes a further increase of the film resistance. A humidity change as low as DeltaRH=0.3 % has been readily detected by conductometry using the nanocomposite thin film.  相似文献   

11.
Multi‐walled carbon nanotubes (MWNTs) were dispersed in the ionic liquid [BMIM][BF4] to form a uniform black suspension. Based on it, a novel glucose oxidase (GOx)‐hyaluronic (HA)‐[BMIM][BF4]‐MWNTs/GCE modified electrode was fabricated. UV‐vis spectroscopy confirmed that GOx immobilized in the composite film retained its native structure. The experimental results of EIS indicated MWNTs, [BMIM][BF4] and HA were successfully immobilized on the surface of GCE and [BMIM][BF4]‐MWNTs could obviously improve the diffusion of ferricyanide toward the electrode surface. The experimental results of CV showed that a pair of well‐defined and quasi‐reversible peaks of GOx at the modified electrode was exhibited, and the redox reaction of GOx at the modified electrode was surface‐confined and quasi‐reversible electrochemical process. The average surface coverage of GOx and the apparent Michaelis‐Menten constant were 8.5×10−9 mol/cm2 and 9.8 mmol/L, respectively. The cathodic peak current of GOx and the glucose concentration showed linear relationship in the range from 0.1 to 2.0 mmol/L with a detection limit of 0.03 mmol/L (S/N=3). As a result, the method presented here could be easily extended to immobilize and obtain the direct electrochemistry of other redox enzymes or proteins.  相似文献   

12.
将肌红蛋白(Mb)通过吸附的方法固定在碳纳米管(CNT)表面, 用AFM、XPS、UV-Vis和FTIR对其进行了表征, 研究了CNT对Mb直接电子转移反应的促进作用. 循环伏安结果表明, Mb在CNT表面能进行有效和稳定的直接电子转移反应, 其循环伏安曲线上表现出一对良好的、几乎对称的氧化还原峰; 在20−160 mV•s−1的扫速范围内, 式量电位E0′几乎不随扫速而变化, 其平均值为(−0.343±0.001) V (vs SCE, pH 7.0); Mb在CNT表面直接电子转移的表观速率常数为(3.11±0.98) s−1; 式量电位E0′与溶液pH的关系表明, Mb的直接电化学过程是一个有H+参与的电极过程. 进一步的实验结果显示, 固定在CNT表面的Mb能保持其对H2O2和O2还原的生物电催化活性.  相似文献   

13.
A robust and effective composite film combined the benefits of Nafion, room temperature ionic liquid (RTIL) and multi‐wall carbon nanotubes (MWNTs) was prepared. Hemoglobin (Hb) was successfully immobilized on glassy carbon electrode surface by entrapping in the composite film. Direct electrochemistry and electrocatalysis of immobilized Hb were investigated in detail. A pair of well‐defined and quasi‐reversible redox peaks of Hb was obtained in 0.10 mol·L?1 pH 7.0 phosphate buffer solution (PBS), indicating that the Nafion‐RTIL‐MWNTs film showed an obvious promotion for the direct electron transfer between Hb and the underlying electrode. The immobilized Hb exhibited an excellent electrocatalytic activity towards the reduction of H2O2. The catalysis current was linear to H2O2 concentration in the range of 2.0×10?6 to 2.5×10?4 mol·L?1, with a detection limit of 8.0×10?7 mol·L?1 (S/N=3). The apparent Michaelis‐Menten constant (Kmapp) was calculated to be 0.34 mmol·L?1. Moreover, the modified electrode displayed a good stability and reproducibility. Based on the composite film, a third‐generation reagentless biosensor could be constructed for the determination of H2O2.  相似文献   

14.
Three methods were used to immobilize myoglobin (Mb) on chitosan/single-wall carbon nanotubes (SWNTs) film, and direct electrochemistry of the immobilized Mb was extensively investigated. Immobilized Mb displayed a couple of stable and well-defined redox peaks with the formal potential (E’) is at about −0.27 V (vs. SCE) in 0.1 M phosphate buffer solution (pH 7.0). The E′ was shifted linearly with pH in the range of 3.0 to 9.0 with a slope of −54.1 mV pH−1, denoting that one-electron accompanies with one-proton transfer in electrode reaction process. The FT-IR spectroscopy and UV-vis spectroscopy showed that Mb on the film retained its secondary structure similar to its native state. The experimental results demonstrated that the immobilized Mb exhibited excellent electrocatalytic activity to reduction of cimetidine with a significant lowering of overpotential. The electrocatalytic current was proportional to the concentration of cimetidine over the range from 9.80 × 10−6 to 1.1 × 10−4 M; the detection limit is 8.40 × 10−6 M (signal-to-noise ratio of 3). The proposed method exhibits good sensitivity, stability and reproducibility. Published in Russian in Elektrokhimiya, 2008, Vol. 44, No. 2, pp. 235–243. The text was submitted by the authors in English  相似文献   

15.
Colloid Au (Aunano) with a diameter of about 20 nm was prepared and used in combination with the multi-wall carbon nanotubes (MWNTs) to modify a gold electrode. Dihexadecylphosphate (DHP) dispersed in Aunano aqueous solution was used to solubilize MWNTs. Deposition of Aunano on MWNTs was realized as illustrated by TEM micrographs. The DHP formed a network that connected Aunano and MWNTs to the gold electrode surface. The Aunano–MWNTs–DHP composite film on the gold electrode surface was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammmetry (CV). The composite film modified gold electrode was used to detect cytochrome c and a pair of well-defined redox waves was obtained. It was found that the composite film promoted the redox of horse heart cytochrome c and its effect was developed for the determination of cytochrome c.  相似文献   

16.
A sensitive electrochemical method for the detection of DNA hybridization based on the probe labeled with multiwall carbon‐nanotubes (MWNTs) loaded with silver nanoparticles (Ag‐MWNTs) has been developed. MWNTs were electroless‐plated with a large number of silver nanoparticles to form Ag‐MWNTs. Probe single strand DNA (ss‐DNA) with a thiol group at the 3′‐terminal labeled with Ag‐MWNTs by self‐assembled monolayer (SAM) technique was employed as an electrochemical probe. Target ss‐DNA with a thiol group was immobilized on a gold electrode by SAM technique and then hybridized with the electrochemical probe. Binding events were monitored by differential pulse voltammetric (DPV) signal of silver nanoparticles. The signal difference permitted to distinguish the match of two perfectly complementary DNA strands from the near perfect match where just three base pairs were mismatched. There was a linear relation between the peak current at +120 mV (vs. SCE) and complementary target ss‐DNA concentration over the range from 3.1×10?14 to 1.0×10?11 mol/L with a detection limit of 10 fmol/L of complementary target ss‐DNA. The proposed method has been successfully applied to detection of the DNA sequence related to cystic fibrosis. This work demonstrated that the MWNTs loaded with silver nanoparticles offers a great promising approach for sensitive detection of DNA hybridization.  相似文献   

17.
《Electroanalysis》2004,16(4):253-259
Sodium montmorillonite was prepared via a colloidal chemical approach and deposited onto glassy carbon electrodes (GCE). Myoglobin was immobilized on the clay membrane modified electrode by spontaneous adsorption. Characterization of the myoglobin/clay/glassy carbon electrode (Mb/clay/GCE) showed a quasi‐reversible, electrochemical redox behavior of the adsorbed protein with a formal potential of ?0.380±0.010 V (vs. Ag/AgCl). The heterogeneous electron transfer rate constant was found to be strongly influenced by the buffer concentration. The Mb/clay/GCE was stable for several days in solution. The interaction of the immobilized Mb with nitric oxide (NO) is characterized by coordination chemistry. The reaction was found to be reversible and could be applied for NO detection in the nanomolar concentration range by a voltammetric analysis. In addition a mixed protein electrode with co‐immmobilized myoglobin (Mb) and cytochrome c (Cyt.c) was developed. By choice of the electrode potential both proteins can be addressed independently.  相似文献   

18.
A multilayers of graphene (GR) and myoglobin (Mb) modified electrode was fabricated with a layer of chitosan film. Electrochemical behaviors of the modified electrode were studied by cyclic voltammetry, which exhibited a couple of well‐behaved, stable and quasi‐reversible cathodic and anodic peaks, indicating that Mb realized its direct electron transfer on the biosensor. The experimental result may be accredited to the existence of multilayers conductive GR nanosheets that could provide big specific surface area, fine biological compatibility and ultrahigh electron transfer route for the immobilized Mb. The catalytic reduction peak currents of the biosensor to the detection of trichloroacetic acid were established from 0.6 to 26.0 mM accompanied with the detection limit as 0.15 mM (3σ). Therefore a novel third‐generation mediator‐free electrochemical sensor was successful prepared with the usage of multilayers of GR.  相似文献   

19.
The direct electron transfer of myoglobin (Mb) was achieved based on the immobilization of Mb/Silver nanoparticles (AgNPs) on glassy carbon electrode by multi-wall carbon nanotubes (MWNTs)-chitosan(Chit) film. The immobilized Mb displayed a pair of well-defined and reversible redox peaks with a formal potential (Eθ′) of − 24 mV (vs. Ag/AgCl) in 0.1 M pH 7.0 phosphate buffer solution. The apparent heterogeneous electron transfer rate constants (ks) of Mb confined to Chit-MWNTs film was evaluated as 5.47 s− 1 according to Laviron's equation. The surface concentration (Γ?) of the electroactive Mb in the Chit-MWNTs film was estimated to be (4.16 ± 0.35) × 10− 9 mol cm− 2. Meanwhile, the catalytic ability of Mb toward the reduction of H2O2 was studied. Its apparent Michaelis–Menten constant for H2O2 was 0.024 mM, showing a good affinity. The linear range for H2O2 determination was from 2.5 × 10− 5 M to 2.0 × 10− 4 M with a detection limit of 1.02 × 10− 6 M (S/N = 3). Moreover, the biosensor displays rapid response to H2O2 and good stability and reproducibility.  相似文献   

20.
In this work, three heavy metals (Cu(II), Pb(II) and Zn(II)) in wide potential window were simultaneously detected on tin film/gold nanoparticles/gold microelectrode (Sn/GNPs/gold microelectrode) by the method of square wave stripping voltammetry. The Sn/GNPs/gold microelectrode was fabricated by in situ plating of a Sn film on a gold nanoparticles (GNPs) modified gold microelectrode. The influence of hydrogen overflow on stripping of Zn(II) on the gold microelectrode was reduced by modification of GNPs, which made the stripping potential of target metals shift positively. The interference of sulfhydryl groups was reduced and the selectivity of the microelectrode was improved due to the addition of Sn in the detection solution. After accumulation at ?1.4 V for 300 s in acetate buffer solution (0.1 mol L?1, pH 4.5), the Sn/GNPs/gold microelectrode revealed a good linear behavior in the examined concentration ranges from 5 to 500 µg L?1 for Cu(II) and Pb(II), and from 10 to 500 µg L?1 for Zn(II), with a limit of detection of 2 µg L?1 for Cu(II), 3 µg L?1 for Pb(II) and 5 µg L?1 for Zn(II) (S/N=3). When compared with a Sb/GNPs/gold microelectrode and a Bi/GNPs/gold microelectrode, the Sn/GNPs/gold microelectrode showed the best stripping performance to Cu(II), Pb(II) and Zn(II). As a new type of environment‐friendly electrode, the Sn/GNPs/gold microelectrode has potential applications for detection of heavy metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号