首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Highly enantioselective cationic iridium‐catalyzed hydroarylation of bicycloalkenes, by carbonyl‐directed C H bond cleavage, was accomplished using a newly synthesized sulfur‐linked bis(phosphoramidite) ligand (S‐Me‐BIPAM). The reaction provides alkylated acetophenone or benzamide derivatives in moderate to excellent yields and good to excellent enantioselectivities. Notably, the hydroarylation reaction of 2‐norbornene with N,N‐dialkylbenzamide proceeds with excellent enantioselectivity (up to 99 % ee) and high selectivity for the mono‐ortho‐alkylation product.  相似文献   

2.
Asymmetric reactions involving (E)‐3‐aryl‐1‐(pyridin‐2‐yl‐N‐oxide)prop‐2‐en‐1‐ones and cyclic enol silyl ethers show good yields and excellent enantioselectivities (up to 99.9 % ee) when catalysed by bis(oxazoline)–CuII complexes. Different reaction pathways can be followed by different enol silyl ethers: with 2‐(trimethylsilyloxy)furan, a Mukaiyama–Michael adduct is obtained, whereas a hetero Diels–Alder cycloadduct was formed by using (1,2‐dihydronaphthalen‐4‐yloxy)trimethylsilane. In the latter reaction, the absolute configuration of the product is consistent with a reagent approach to the less hindered Re face of the coordinated substrate in the reactive complex.  相似文献   

3.
Room temperature ionic liquid (bmim)PF6 was evaluated for recycling an organocatalyst (4S)-phenoxy-(S)-proline for direct asymmetric aldol reactions. The desired aldol products were obtained with good yields up to 93.2% and enantioselectivities up to 88.5%, and isolation of the products by simple extraction allowed recycling the ionic liquid containing the immobilized catalyst in subsequent reactions without significant decrease of yields and enantioselectivities.  相似文献   

4.
An enantioselective [3+2] cycloaddition of vinyl cyclopropane derived from 1,3‐indanedione with nitroalkenes catalyzed by palladium(0) with a chiral bis(tert‐amine) ligand was developed in high yields with good diastereoselectivities and excellent enantioselectivities. The resulting bis(tert‐amine)–palladium complex proved to be a highly efficient catalyst for this cycloaddition.  相似文献   

5.
《中国化学》2017,35(10):1512-1516
Scandium‐catalyzed asymmetric Claisen rearrangement reactions of 2‐allyloxyindoles and 2‐propargyloxyindoles provide a novel approach to diverse 3‐allyloxindoles and 3‐allenyloxindoles in excellent yields (up to 99%) and enantioselectivity (up to 99% ee ) under mild reaction conditions. The scandium catalyst was derived from Sc(OTf )3 and Pybox ligand.  相似文献   

6.
With 3,3′‐bis(2‐oxazolyl)‐1,1′‐bi‐2‐naphthols (BINOL‐Box) synthesized from 1,1′‐bi‐2‐naphthol (BINOL), the enantioselective addition of diethylzinc to aryl aldehydes proceeded smoothly to give secondary aryl alcohols in good yield with good enantioselectivity. Interestingly, the yields and enantioselectivities were affected by the mixing sequence of the reactants. Furthermore, the synthesis of both enantiomers of the addition products has been achieved using the same ligands by choosing achiral additives, Ti(O‐iPr)4 and 4A molecular sieves. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
We have accomplished highly enantioselective [2,3]‐Wittig rearrangements of functionalized allyl benzyl ethers in the presence of a chiral di‐tBu‐bis(oxazoline) ligand. In various oxygenated benzylic ethers, the reactions proceeded with excellent diastereo‐ and enantioselectivities, although the presence of a methoxy substituent at the ortho‐position on the benzyl group drastically decreased the enantioselectivity. Conversely, o‐ethyl and o‐phenyl substituents had no significant effect on the selectivity. We found that the C2‐substituent of the allylic moiety played an important role in producing high enantioselectivity. Highly enantioselective [2,3]‐Wittig rearrangement in the presence of catalytic amounts of the chiral ligands is also described.  相似文献   

8.
A Z‐selective rhodium‐catalyzed hydrothiolation of 1,3‐disubstituted allenes and subsequent oxidation towards the corresponding allylic sulfones is described. Using the bidentate 1,4‐bis(diphenylphosphino)butane (dppb) ligand, Z/E‐selectivities up to >99:1 were obtained. The highly atom‐economic desymmetrization reaction tolerates functionalized aromatic and aliphatic thiols. Additionally, a variety of symmetric internal allenes, as well as unsymmetrically disubstituted substrates were well tolerated, thus resulting in high regioselectivities. Starting from chiral but racemic 1,3‐disubstituted allenes a dynamic kinetic resolution (DKR) could be achieved by applying (S,S)‐Me‐DuPhos as the chiral ligand. The desired Z‐allylic sulfones were obtained in high yields and enantioselectivities up to 96 % ee.  相似文献   

9.
Asymmetric arylative dearomatization reactions of para‐aminophenols are realized by a Pd‐catalyst consisting of a TADDOL (α,α,α',α'‐tetraaryl‐2,2‐disubstituted 1,3‐dioxolane‐4,5‐dimethanol)‐derived chiral phosphoramidite ligand. The tetracyclic products bearing the key skeleton of Erythrina alkaloids are afforded in reasonable yields (up to 73%) with good to excellent enantioselectivity (up to 97% ee). Concise total synthesis of (–)‐3‐demethoxyerythratidinone is achieved by employing this method as the key step.  相似文献   

10.
A chiral cobalt(III) complex ( 1 e ) was synthesized by the interaction of cobalt(II) acetate and ferrocenium hexafluorophosphate with a chiral dinuclear macrocyclic salen ligand that was derived from 1R,2R‐(?)‐1,2‐diaminocyclohexane with trigol bis‐aldehyde. A variety of epoxides and glycidyl ethers were suitable substrates for the reaction with water in the presence of chiral macrocyclic salen complex 1 e at room temperature to afford chiral epoxides and diols by hydrolytic kinetic resolution (HKR). Excellent yields (47 % with respect to the epoxides, 53 % with respect to the diols) and high enantioselectivity (ee>99 % for the epoxides, up to 96 % for the diols) were achieved in 2.5–16 h. The CoIII macrocyclic salen complex ( 1 e ) maintained its performance on a multigram scale and was expediently recycled a number of times. We further extended our study of chiral epoxides that were synthesized by using HKR to the synthesis of chiral drug molecules (R)‐mexiletine and (S)‐propranolol.  相似文献   

11.
A synthesis of novel bis(triazolothiadiazines) 11 , 12 , 13 , 14 , bis(quinoxalines) 16 and 17 , bis(thiadiazoles) 24 and 25 , and bis(oxadiazole) 31 , which are linked to the thieno[2,3‐b]thiophene core via phenoxymethyl group, was reported. Thus, reaction of the bis(α‐bromoketones) 6 and 7 with the corresponding 4‐amino‐3‐mercapto‐1,2,4‐triazole derivatives 8 , 9 , 10 in ethanol–DMF mixture in the presence of a few drops of triethylamine as a catalyst under reflux afforded the novel bis(5,6‐dihydro‐s‐triazolo[3,4‐b]thiadiazines) 11 , 12 , 13 , 14 in 60–72% yields. The bis(quinoxalines) 16 and 17 were also synthesized as a sole product in high yields by the reaction of 6 and 7 with o‐phenylenediamine 15 in refluxing acetonitrile in the presence of piperidine as a catalyst. Cyclization of the bis(aldehyde thiosemicarbazones) 20 and 21 with acetic anhydride afforded the corresponding bis(4,5‐dihydro‐1,3,4‐thiadiazolyl) derivatives 24 and 25 in good yield. Bis(5‐phenyl‐2,3‐dihydro‐1,3,4‐oxadiazole) derivative 31 could be obtained in 67% yield by cyclization of the appropriate bis(N‐phenylhydrazone) 29 in refluxing acetic anhydride for 3 h.  相似文献   

12.
A set of ten C1‐symmetric chiral bicyclo[2.2.2]octa‐2,5‐dienes (bod*) 2 (Fig. 1) were tested as ligands in Rh‐catalyzed arylation reactions. The 1,4‐addition of arylboronic acids to cyclohex‐2‐en‐1‐one, cyclopent‐2‐en‐1‐one, and tert‐butyl cinnamate proceeded smoothly with excellent enantioselectivities (up to 99% ee; Tables 13). The challenging 1,2‐addition of triphenylboroxine to N‐[(4‐nitrophenyl)sulfonyl]imines yielded the product in high yield and in good enantioselectivity (up to 92% ee; Table 4). Generally, the use of C1‐symmetric chiral bod* ligands bearing bulky substituents resulted in lower enantioselectivities, whereas several electron‐poor and electron‐rich bod* ligands gave higher enantioselectivities than the benchmark ligands reported in literature.  相似文献   

13.
The catalytic enantioselective reaction of diphenylmethylidene‐protected α‐aminoacetonitriles with imines has been developed. Good yields and diastereo‐ and enantioselectivities were observed for the reaction of various imines using chiral bis(imidazoline)/Pd catalysts. The reaction of α‐aminonitriles with di‐tert‐butyl azodicarboxylate afforded chiral α,α‐diaminonitriles in high yields with high enantioselectivities.  相似文献   

14.
Yu Jin  Da-Ming Du 《Tetrahedron》2012,68(18):3633-3640
The phosphine oxide-linked bis(oxazoline) ligands were designed and synthesized in two ways. One is the coupling of Grignard reagent derived from 2-(2-bromophenyl)oxazoline with phenylphosphonic dichloride, another route is the condensation of bis(2-formylphenyl)(phenyl)phosphine oxide with chiral amino alcohols followed by NBS oxidation. These new bis(oxazoline) ligands were applied in Pd-catalyzed asymmetric allylic alkylation reactions and good yields and enantioselectivities were obtained with diphenyl substituted ligand (up to 95% ee).  相似文献   

15.
ZrIV and TaV Complexes with Methano‐Bridged Bis(aryloxy) Ligands The bis(aryloxy) ligand precursor compounds bis(2‐trimethylsiloxy‐5‐tbutylphenyl)methane (L–SiMe3) and its bromoderivative (2‐trimethylsiloxy‐3‐bromo‐5‐tbutylphenyl)(2′‐trimethylsiloxy‐5′‐tbutylphenyl)methane (LBr–SiMe3) are prepared in analogy to the corresponding calixarenes in excellent yields. X‐ray structure analysis for LBr–SiMe3: space group P21/c, a = 12.462(7), b = 10.466(6), c = 23.315(14) Å, β = 105.02(4)°, V = 2937(3) Å3, Z = 4. L–SiMe3 and LBr–SiMe3 react with ZrIV and TaV chlorides in very good yields forming di‐ and trinuclear complexes. From the reaction of CpZrCl3 with LBr–SiMe3 in the ratio of 3 : 2 a Zr3 complex ( 7 ) is obtained, with one LBr ligand only, which Zr atoms are bridged by a μ3‐oxygen. The X‐ray structure analysis of 7 (space group R 3, a = 33.23(6), c = 24.47(8) Å, V = 23405(128) Å3, Z = 18) additionally reveals that one phenolato oxygen atom of the LBr ligand is terminally bound to a distorted tetragonal‐pyramidal coordinated Zr atom, while the second phenolato oxygen atom of the LBr ligand forms a bridge to another Zr atom with a distorted octahedral coordination. The third Zr atom is also found in a distorted octahedral coordination mode. The reactions of L–SiMe3 and LBr–SiMe3 with CpTaCl4 and TaCl5 yield dinuclear Ta complexes with a bridging bis(aryloxy) ligand. NMR spectroscopic data point out that the coordination of the bis(aryloxy) ligands in the Ta complexes very much resembles that in the Zr3‐complex with one terminal and one bridging phenolato oxygen atom. The Zr3 and the Ta complexes LBrTa2Cp2Cl6 and LTa2Cl8 were tested with respect to their catalytic properties in olefin polymerisation reactions in the presence of MAO.  相似文献   

16.
A synthesis of bis(α‐bromo ketones) 5a‐c and 6b,c was accomplished by the reaction of bis(acetophenones) 3a‐c and 4b,c with N‐bromosuccinimide in the presence of p‐toluenesulfonic acid (p‐TsOH). Treatment of 5a‐c and 6b,c with each of 4‐amino‐3‐mercapto‐1,2,4‐triazoles 9a,b and 4‐amino‐6‐phenyl‐3‐mercapto‐1,2,4‐triazin‐5(4H)‐ones 13 in refluxing ethanol afforded the novel bis(s‐triazolo[3,4‐b][1,3,4]thiadiazines) 10a‐d and 11a‐c as well as bis(as‐triazino[3,4‐b][1,3,4]thiadiazines) 14a‐c and 15 , respectively, in good yields. Compounds 11b and 11c underwent NaBH4 reduction in methanol to give the target 1,ω‐bis{4‐(6,7‐dihydro‐3‐substituted‐5H‐1,2,4‐triazolo[3,4‐b][1,3,4]thiadiazin‐6‐yl)phenoxy}butanes 12a and 12b in 42 and 46% yields, respectively.  相似文献   

17.
The common use of NHC complexes in transition‐metal mediated C–C coupling and metathesis reactions in recent decades has established N‐heterocyclic carbenes as a new class of ligand for catalysis. The field of asymmetric catalysis with complexes bearing NHC‐containing chiral ligands is dominated by mixed carbene/oxazoline or carbene/phosphane chelating ligands. In contrast, applications of complexes with chiral, chelating bis(NHC) ligands are rare. In the present work new chiral iridium(I) bis(NHC) complexes and their application in the asymmetric transfer hydrogenation of ketones are described. A series of chiral bis(azolium) salts have been prepared following a synthetic pathway, starting from L ‐valinol and the modular buildup allows the structural variation of the ligand precursors. The iridium complexes were formed via a one‐pot transmetallation procedure. The prepared complexes were applied as catalysts in the asymmetric transfer hydrogenation of various prochiral ketones, affording the corresponding chiral alcohols in high yields and moderate to good enantioselectivities of up to 68%. The enantioselectivities of the catalysts were strongly affected by the various, terminal N‐substituents of the chelating bis(NHC) ligands. The results presented in this work indicate the potential of bis‐carbenes as stereodirecting ligands for asymmetric catalysis and are offering a base for further developments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
A highly enantioselective Pd‐catalysed decarboxylative asymmetric allylic alkylation of cyclopentanone derived α‐aryl‐β‐keto esters employing the (R,R)‐ANDEN‐phenyl Trost ligand has been developed. The product (S)‐α‐allyl‐α‐arylcyclopentanones were obtained in excellent yields and enantioselectivities (up to >99.9 % ee). This represents one of the most highly enantioselective formations of an all‐carbon quaternary stereogenic center reported to date. This reaction was demonstrated on a 4.0 mmol scale without any deterioration of enantioselectivity and was exploited as the key enantioselective transformation in an asymmetric formal synthesis of the natural product (+)‐tanikolide.  相似文献   

19.
A new class of modular P,N‐ligand library has been synthesized and screened in the Pd‐catalyzed allylic substitution reactions of several substrate types. These series of ligands can be prepared efficiently from easily accessible hydroxyl–oxazole/thiazole derivatives. Their modular nature enables the bridge length, the substituents at the heterocyclic ring and in the alkyl backbone chain, the configuration of the ligand backbone, and the substituents/configurations in the biaryl phosphite moiety to be easily and systematically varied. By carefully selecting the ligand components, therefore, high regio‐ and enantioselectivities (ee values up to 96 %) and good activities are achieved in a broad range of mono‐, di‐, and trisubstituted linear hindered and unhindered substrates and cyclic substrates. The NMR spectroscopic and DFT studies on the Pd–π‐allyl intermediates provide a deeper understanding of the effect of ligand parameters on the origin of enantioselectivity.  相似文献   

20.
Herein, we report the first Pd‐catalyzed enantioselective arylation of α‐substituted γ‐lactams. Two sets of conditions were developed for this transformation, allowing for the use of either aryl chlorides or bromides as electrophiles. Utilizing a highly electron‐rich dialkylphosphine ligand we have been able to construct α‐quaternary centers in good yields (up to 91 % yield) and high enantioselectivities (up to 97 % ee).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号