共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
边界元法的一大优势是用于求解半空间等无限域问题,但在求解弹性波的传播问题中,传统边界元法采用的全平面或全空间格林函数会在截断边界处产生虚假的反射回波,这会引起散射场求解的误差.为了避免这种误差,论文在传统边界元法基础上提出一种修正边界元法,该修正方法主要包括:以瑞利波形式的远端散射场代替原本因截断而舍去的部分,通过互易定理建立单位瑞利波和全平面格林函数的积分方程,求得修正系数,并代入修正边界元矩阵,计算出瑞利波的散射场.文中基于该方法计算了无缺陷平面的瑞利波(与解析解的误差为1.24×10-5),并运用该方法计算了不同缺陷的散射场.由文中对比结果表明,论文所提修正边界元法可准确求解瑞利波散射场,为基于表面波的缺陷反演问题研究提供了有效的正演途径. 相似文献
3.
Results are reported of an unsteady Reynolds‐averaged Navier–Stokes (RANS) method for simulation of the boundary layer and wake and wave field for a surface ship advancing in regular head waves, but restrained from body motions. Second‐order finite differences are used for both spatial and temporal discretization and a Poisson equation projection method is used for velocity–pressure coupling. The exact kinematic free‐surface boundary condition is solved for the free‐surface elevation using a body‐fitted/free‐surface conforming grid updated in each time step. The simulations are for the model problem of a Wigley hull advancing in calm water and in regular head waves. Verification and validation procedures are followed, which include careful consideration of both simulation and experimental uncertainties. The steady flow results are comparable to other steady RANS methods in predicting resistance, boundary layer and wake, and free‐surface effects. The unsteady flow results cover a wide range of Froude number, wavelength, and amplitude for which first harmonic amplitude and phase force and moment experimental data are available for validation along with frequency domain, linear potential flow results for comparisons. The present results, which include the effects of turbulent flow and non‐linear interactions, are in good agreement with the data and overall show better capability than the potential flow results. The physics of the unsteady boundary layer and wake and wave field response are explained with regard to frequency of encounter and seakeeping theory. The results of the present study suggest applicability for additional complexities such as practical ship geometry, ship motion, and maneuvering in arbitrary ambient waves. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
4.
A coupled boundary element–finite difference model of surface wave motion over a wall turbulent flow
Mirmosadegh Jamali 《国际流体数值方法杂志》2006,51(4):371-383
An effective numerical technique is presented to model turbulent motion of a standing surface wave in a tank. The equations of motion for turbulent boundary layers at the solid surfaces are coupled with the potential flow in the bulk of the fluid, and a mixed BEM–finite difference technique is used to model the wave motion and the corresponding boundary layer flow. A mixing‐length theory is used for turbulence modelling. The model results are in good agreement with previous physical and numerical experiments. Although the technique is presented for a standing surface wave, it can be easily applied to other free surface problems. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
5.
S.A. Yang 《国际流体数值方法杂志》2000,32(4):465-493
This paper presents a numerical method to evaluate the hydrodynamic forces of translating bodies under a free surface. Both steady and unsteady problems are considered. Analytical and numerical studies are carried out based on the Havelock wave‐source function and the integral equation method. Two main problems arising inherently in the proposed solution method are overcome in order to facilitate the numerical implementation. The first lies in evaluating the Havelock function, which involves integrals with highly oscillatory kernels. Particular integration contours leading to non‐oscillatory integrands are derived a priori so that the integrals can be evaluated efficiently. The second problem lies in evaluating singular kernels in the boundary integral equation. The corresponding non‐singular formulation is derived using some theorems of potential theory, including the Gauss flux theorem and the property related to the equipotential body. The subsequent formulation is amenable to the solution by directly using the standard quadrature formulas without taking another special treatment. This paper also attempts to enhance the computational efficiency by presenting an interpolation method used to evaluate matrix elements, which are ascribed to a discretization procedure. In addition to the steady case, numerical examples consist of cases involving a submerged prolate spheroid, which is originally idle and then suddenly moves with a constant speed and a constant acceleration. Also systematically studied is the variation of hydrodynamic forces acting on the spheroid for various Froude numbers and submergence depths. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
6.
In this paper, the authors treat the free‐surface waves generated by a moving disturbance with a constant speed in water of finite and constant depth. Specifically, the case when the disturbance is moving with the critical speed is investigated. The water is assumed inviscid and its motion irrotational. The surface tension is neglected. It is well‐known that the linear theory breaks down when a disturbance is moving with the critical speed. As a remedy to overcome the invalid linear theory, approximate non‐linear theories have been applied with success in the past, i.e. Boussinesq and Korteweg de Vries equations, for example. In the present paper, the authors describe a finite element method applied to the non‐linear water‐wave problems in two dimensions. The present numerical method solves the exact non‐linear formulation in the scope of potential theory without any additional assumptions on the magnitude of the disturbances. The present numerical results are compared with those obtained by other approximate non‐linear theories. Also presented are the discussions on the validity of the existing approximate theories applied to two types of the disturbances, i.e. the bottom bump and the pressure patch on the free‐surface at the critical speed. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
7.
The determination of an equivalent elastic modulus for bodies with cracks by boundary element method
The equivalent elastic modulus of cracked bodies with orderly distributed cracks was computed with the boundary element method. A practical self-consistent scheme has been proposed in consideration of the mutual interaction effects of the cracks. The influence of friction coefficients and orientation of cracks has been investigated. Some computational examples have been given, and the results show that the proposed method is adequate and the scheme is efficient.This project is supported by the National Natural Science Foundation of China. 相似文献
8.
The Lagrangian method has become increasingly popular in numerical simulation of free surface problems. In this paper, after a brief review of a recent Lagrangian method, namely the particle finite element method, some issues are discussed and some improvements are made. The least‐square finite element method is adopted to simplify the solving of the Navier–Stokes equations. An adaptive time method is derived to obtain suitable time steps. A mass correction procedure is imported to improve the mass conservation in long time calculations and time discretization scheme is adopted to decrease the pressure oscillations during the calculations. Finally, the method is used to simulate a series of examples and the results are compared with the commercial FLOW3D code. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
9.
In this study, a method is developed to simulate the interaction between free surface flows and moving or deforming boundaries using the flux‐difference splitting scheme on the hybrid Cartesian/immersed boundary method. At each physical time step, the boundary is defined by an unstructured triangular surface grid. Immersed boundary (IB) nodes are distributed inside an instantaneous fluid domain based on edges crossing the boundary. At an IB node, dependent variables are reconstructed along the local normal line to the boundary. Inviscid fluxes are computed using Roe's flux‐difference splitting scheme for immiscible and incompressible fluids. The free surface is considered as a contact discontinuity in the density field. The motion of free surface is captured without any additional treatment along the fluid interface. The developed code is validated by comparisons with other experimental and computational results for a piston‐type wave maker, impulsive motion of a submerged circular cylinder, flow around a submerged hydrofoil, and Rayleigh–Taylor instability. The developed code is applied to simulate wave generation due to a continuously deforming bed beneath the free surface. The violent motion of a free surface caused by sloshing in a spherical tank is simulated. In this case, the free surface undergoes breakup and reconnection. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
10.
利用满足Laplace方程,线性化自由面条件及无穷远处条件的Havelock兴波源涵数,建立了关于常航速稳态船波势函数的边界积分方程.针对这个积分方程,建立了相应的数值计算方法,编制了一般三维问题的边界元法计算机程序,可用来计算全潜和半潜物体的稳态绕流场及船舶兴波阻力. 相似文献
11.
A mesh‐free particle method, based on the moving particle semi‐implicit (MPS) interaction model, has been developed for the simulation of two‐dimensional open‐boundary free‐surface flows. The incompressibility model in the original MPS has been replaced with a weakly incompressible model. The effect of this replacement on the efficiency and accuracy of the model has been investigated. The new inflow–outflow boundary conditions along with the particle recycling strategy proposed in this study extend the application of the model to open‐boundary problems. The final model is able to simulate open‐boundary free surface flow in cases of large deformation and fragmentation of free surface. The models and proposed algorithms have been validated and applied to sample problems. The results confirm the model's efficiency and accuracy. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
12.
A parallel, finite element method is presented for the computation of three‐dimensional, free‐surface flows where surface tension effects are significant. The method employs an unstructured tetrahedral mesh, a front‐tracking arbitrary Lagrangian–Eulerian formulation, and fully implicit time integration. Interior mesh motion is accomplished via pseudo‐solid mesh deformation. Surface tension effects are incorporated directly into the momentum equation boundary conditions using surface identities that circumvent the need to compute second derivatives of the surface shape, resulting in a robust representation of capillary phenomena. Sample results are shown for the viscous sintering of glassy ceramic particles. The most serious performance issue is error arising from mesh distortion when boundary motion is significant. This effect can be severe enough to stop the calculations; some simple strategies for improving performance are tested. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
13.
A methodology for computing three‐dimensional interaction between waves and fixed bodies is developed based on a fully non‐linear potential flow theory. The associated boundary value problem is solved using a finite element method (FEM). A recovery technique has been implemented to improve the FEM solution. The velocity is calculated by a numerical differentiation technique. The corresponding algebraic equations are solved by the conjugate gradient method with a symmetric successive overrelaxation (SSOR) preconditioner. The radiation condition at a truncated boundary is imposed based on the combination of a damping zone and the Sommerfeld condition. This paper (Part 1) focuses on the technical procedure, while Part 2 [Finite element simulation of fully non‐linear interaction between vertical cylinders and steep waves. Part 2. Numerical results and validation. International Journal for Numerical Methods in Fluids 2001] gives detailed numerical results, including validation, for the cases of steep waves interacting with one or two vertical cylinders. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
14.
Bjarne Büchmann 《国际流体数值方法杂志》2001,37(3):321-339
A method is presented for examining the stability of a free‐surface time‐domain boundary element model based on B‐splines. Effects of a non‐uniform discretization occurring in practical applications are included. It is demonstrated that instabilities may occur, even in situations where earlier stability analyses predicted the scheme to be stable. These instabilities are due to non‐uniformities in the spatial discretization, which have until now not been included in the stability analyses. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
15.
The problem of the diffraction of surface waves, obliquely incident on a partially immersed fixed vertical barrier in deep water, is solved approximately by reducing it to the solution of an integral equation, for small angle of incidence of the incident wave. The corrections to the reflection and transmission coefficients over their normal incidence values for small angle of incidence are obtained and presented graphically for some intermediate values of wave numbers. 相似文献
16.
For three‐dimensional finite element analysis of transient fluid flow with free‐surface, a new marker surface method is proposed, in which the fluid flow is represented by the marker surface composed of marker elements instead of marker particles used in the marker particle method. This also involves an adaptive grid that is created under a new criterion of element categorization of filling states and the locations in the total region at each time step. The marker surface is used in order to represent the free‐surface accurately, as well as to decrease the memory and computation time, and to effectively display the predicted three‐dimensional free‐surface. By using the adaptive grid in which the elements, finer than those in internal and external regions, are distributed in the surface region through refinement and coarsening procedures, the analysis of three‐dimensional transient fluid flow with free‐surface is achieved more efficiently. Through three‐dimensional analysis of two kinds of problems using several grids, the efficiency of the proposed marker surface method and the adaptive grid are verified. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
17.
面元法求解有限水深船舶兴波及水底压力变化 总被引:2,自引:1,他引:2
应用势流理论中的格林函数方法计算了船舶定常运动的水动力参数,将有限水深Kelvin移动兴波源格林函数分解成三部分:简单Rankine源集合、局部扰动项和波函数项。在亚临界和超临界航速时,采用不同的积分顺序来消除被积函数的奇异性。利用面元法在船体表面上分布Kelvin源,计算了有限水深下船体表面的源强、压力分布及表面兴波,比较了有限与无限水深结果的区别和联系,进一步求解了船舶航行时引起的水底压力变化,计算结果与实验测量结果吻合良好。 相似文献
18.
A finite difference scheme using a modified marker‐and‐cell (MAC) method is applied to investigate the characteristics of non‐linear wave motions and their interactions with a stationary three‐dimensional body inside a numerical wave tank (NWT). The Navier–Stokes (NS) equation is solved for two fluid layers, and the boundary values are updated at each time step by a finite difference time marching scheme in the frame of a rectangular co‐ordinate system. The viscous stresses and surface tension are neglected in the dynamic free‐surface condition, and the fully non‐linear kinematic free‐surface condition is satisfied by the density function method developed for two fluid layers. The incident waves are generated from the inflow boundary by prescribing a velocity profile resembling flexible flap wavemaker motions, and the outgoing waves are numerically dissipated inside an artificial damping zone located at the end of the tank. The present NS–MAC NWT simulations for a vertical truncated circular cylinder inside a rectangular wave tank are compared with the experimental results of Mercier and Niedzwecki, an independently developed potential‐based fully non‐linear NWT, and the second‐order diffraction computation. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
19.
A boundary element method for the solution of finite mobility ratio immiscible displacement in a Hele‐Shaw cell 下载免费PDF全文
In this paper, the interaction between two immiscible fluids with a finite mobility ratio is investigated numerically within a Hele‐Shaw cell. Fingering instabilities initiated at the interface between a low‐viscosity fluid and a high‐viscosity fluid are analysed at varying capillary numbers and mobility ratios using a finite mobility ratio model. The present work is motivated by the possible development of interfacial instabilities that can occur in porous media during the process of CO2 sequestration but does not pretend to analyse this complex problem. Instead, we present a detailed study of the analogous problem occurring in a Hele‐Shaw cell, giving indications of possible plume patterns that can develop during the CO2 injection. The numerical scheme utilises a boundary element method in which the normal velocity at the interface of the two fluids is directly computed through the evaluation of a hypersingular integral. The boundary integral equation is solved using a Neumann convergent series with cubic B‐Spline boundary discretisation, exhibiting sixth‐order spatial convergence. The convergent series allows the long‐term nonlinear dynamics of growing viscous fingers to be explored accurately and efficiently. Simulations in low‐mobility ratio regimes reveal large differences in fingering patterns compared with those predicted by previous high‐mobility ratio models. Most significantly, classical finger shielding between competing fingers is inhibited. Secondary fingers can possess significant velocity, allowing greater interaction with primary fingers compared with high‐mobility ratio flows. Eventually, this interaction can lead to base thinning and the breaking of fingers into separate bubbles. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
20.
Richard A. Cairncross P. Randall Schunk Thomas A. Baer Rekha R. Rao Phillip A. Sackinger 《国际流体数值方法杂志》2000,33(3):375-403
Computational fluid mechanics techniques for examining free surface problems in two‐dimensional form are now well established. Extending these methods to three dimensions requires a reconsideration of some of the difficult issues from two‐dimensional problems as well as developing new formulations to handle added geometric complexity. This paper presents a new finite element formulation for handling three‐dimensional free surface problems with a boundary‐fitted mesh and full Newton iteration, which solves for velocity, pressure, and mesh variables simultaneously. A boundary‐fitted, pseudo‐solid approach is used for moving the mesh, which treats the interior of the mesh as a fictitious elastic solid that deforms in response to boundary motion. To minimize mesh distortion near free boundary under large deformations, the mesh motion equations are rotated into normal and tangential components prior to applying boundary conditions. The Navier–Stokes equations are discretized using a Galerkin–least square/pressure stabilization formulation, which provides good convergence properties with iterative solvers. The result is a method that can track large deformations and rotations of free surface boundaries in three dimensions. The method is applied to two sample problems: solid body rotation of a fluid and extrusion from a nozzle with a rectangular cross‐section. The extrusion example exhibits a variety of free surface shapes that arise from changing processing conditions. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献