首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of 4‐amino‐5‐methyl‐2H‐1,2,4‐triazole‐3(4H)‐thione (AMTT, 1 ) with AgNO3 and triphenylphosphane in a molar ratio 1:1:2 in ethanol led to the dimeric complex {[Ag(AMTT)(PPh3)2]NO3}2·4EtOH ( 2 ). 2 was characterized by elemental analyses, IR, 31P NMR spectroscopy as well as single crystal X‐ray diffraction. Crystal data for 2 at ?80 °C: space group with a = 1265.5(2), b = 1300.9(2), c = 1509.5(2) pm, α = 83.77(2)°, β = 79.22(2)°, γ = 62.89(2)°, Z = 2, R1 = 0.0330.  相似文献   

2.
The reaction of 4‐amino‐5‐methyl‐2H‐1,2,4‐triazole‐3(4H)‐thione with AgNO3 in methanol led to the complex [Ag(ATT)2]NO3 ( 2 ). 2 was characterized by elemental analyses, IR, 1HNMR and Raman spectroscopy as well as single‐crystal X‐ray diffraction. Crystal data for 2 at ?70 °C: space group P21/n with a = 1356.7(12), b = 770.4(7), c = 1475.2(12) pm, β = 111.730(15)°, Z = 4, R1 = 0.0402.  相似文献   

3.
The reaction of 4‐amino‐5‐methyl‐2H‐1,2,4‐triazole‐3(4H)‐thione (AMTT) with 4‐methylbenzaldehyde and 4‐methoxybenzaldehyde in ethanol led to the iminic derivatives ‐4‐(4‐methylbenzylideneamino)‐5‐methyl‐2H‐1,2,4‐triazole‐3(4H)thione ( L1 ) and 4‐(4‐methoxybenzyl‐ideneamino)‐5‐methyl‐2H‐1,2,4‐triazole‐3(4H)‐thione ( L2 ). The reaction of L1 with CuCl in the presence of triphenylphosphane as co‐ligand in methanol/chloroform solution gave the CuI complex containing L1 , [Cu( L1 )(PPh3)2Cl]·0.5CH3OH·0.25CHCl3 ( 1 ). Treatment of L2 with the same metal salt in a molar ratio of 1:1 in methanol and further addition of a solution of PPh3 in chloroform led to the complex [Cu( L2 )(PPh3)2Cl]·2.5CHCl3 ( 2 ). The complexes and L1 were characterized by IR and NMR spectroscopy as well as by X‐ray diffraction studies. In both complexes, the Schiff base ligand is coordinated to the copper ion through its sulfur atom. The other coordination sites around the copper ion are occupied by two triphenylphosphane molecules and one chloride ion. Therefore, each CuI ion is in a distorted tetrahedral environment. Crystal data for L1 at ?100 °C: space group P21/n with a = 720.5(1), b = 1140.6(1), c = 1426.3(2) pm, β = 91.25(1)°, Z = 4, R1 = 0.03, for 1 at ?120 °C : space group with a = 1286.3(1), b = 1740.3(1), c = 2060.2(1) pm, α = 79.085(6), β = 83.827(5), γ = 76.688(6)°, Z = 4, R1 = 0.0649 and for 2 at ?80 °C : space group with a = 1183.7(2), b = 1370.1(2), c = 1812.1(3) pm, α = 85.69(2), β = 88.52(2), γ = 64.89(2)°, Z = 2, R1 = 0.0488.  相似文献   

4.
3‐Benzyl‐4‐phenyl‐1,2,4‐triazole‐5‐thiol ( 1 ) was synthesized and used as starting material for preparation of 1,2,4‐triazole bearing substituted thiosemicarbazides moiety ( 4a‐d ) in high yields. The thiosemicarbazides 4a‐d were cyclized in basic medium to give two triazole rings linked by thiomethylene group ( 5a‐d ), while cyclization of thiosemicarbazides 4a‐d with chloroacetyl chloride in the presence of CHCl3 and K2CO3 afforded the thiazolidinone derivatives 6a‐d . The reaction of thiosemicarbazides 4a‐c with phenacyl bromide in the presence of EtOH and fused CH3COONa gave the corresponding thiazoline ring systems 7a‐c . Condensation of the 3‐benzyl‐1,2,4‐triazole‐5(1H)‐thiol ( 1 ) with chloroacetic acid and aromatic aldehydes ( 8a‐ g) in boiling acetic acid/acetic anhydride mixture in the presence of fused sodium acetate gave one single isomer only, which might be 9a‐g or 10a‐g . Upon application of Micheal addition reaction on compounds 9a‐e with cyclic secondary amines such as piperidine or morpholine the 2‐benzyl‐6‐(α‐amino‐aryl/methyl)‐1,3‐thiazolo[3,2‐ b][1,2,4]‐triazol‐5‐ols ( 11a‐j ) were obtained in good yields The structure of all new compounds were determined using both spectral and elemental analyses.  相似文献   

5.
A new and convenient synthesis of a variety of N‐ and S‐substituted tetrazoles has been developed via azide and Mannich reaction methods. Compounds were characterized by elemental analysis, MALDI MS, and 1H NMR data. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:637–643, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20353  相似文献   

6.
以4-氨基-4,5-二氢-3-苯氧甲基-1氢-1,2,4-三唑-5-硫酮与取代苯甲醛为原料反应制得了9个新的三唑硫酮席夫碱类化合物,经IR、1H NMR和元素分析确定了各化合物结构。初步室内毒力测试结果表明该类化合物其具有较好的杀菌活性。  相似文献   

7.
The reactions of 4‐amino‐5‐methyl‐2H‐1,2,4‐triazole‐3(4H)‐thione (AMTT, L1 ) with 2‐thiophen carbaldehyde, salicylaldehyde and 2‐nitrobenzaldehyde in methanol led to the corresponding Schiff‐bases ( L1a‐c ). The reaction of L1 with [(PPh3)2Cu]NO3 in ethanol gave the ionic complex [(PPh3)2Cu(L1)]NO3·EtOH ( 2 ) All compounds were characterized by infrared spectroscopy, elemental analyses as well as by X‐ray diffraction studies. Crystal data for L1a at 20 °C: space group P21/n with a = 439.6(2), b = 2074.0(9), c = 1112.8(4) pm, β = 93.51(3)°, Z = 4, R1 = 0.0406, L1b at ?80 °C: space group P21/n with a = 1268.9(2), b = 739.3(1), c = 1272.5(1) pm, β = 117.97(1)°, Z = 4, R1 = 0.0361, L1c at ?80 °C: space group P21/n with a = 847.8(1), b = 1502.9(2), c = 981.5(2) pm, β = 110.34(1)°, Z = 4, R1 = 0.0376 and for 2 at ?80 °C: space group with a = 1247.8(1), b = 1270.3(1), c = 1387.5(1) pm, α = 84.32(1)°, β = 84.71(1)°, γ = 63.12(1)°, Z = 2, R1 = 0.0539.  相似文献   

8.
A new series of 3‐alkylthio‐4,5‐diaryl‐4H‐1,2,4‐triazoles having a SO2NH2 substituent in the para‐position on one of the aryl rings ( 19/25 ) were prepared starting from the appropriate benzoic acid hydrazides ( 15/21 ). Reaction of the corresponding hydrazides with the appropriate isothiocyanates yielded 16/22 , which were cyclized in basic media to give 4,5‐diaryl‐2,4‐dihydro‐3H‐1,2,4‐triazole‐3‐thiones 17/23 . Alkylation of 17/23 afforded the alkylthio compounds 18/24 . Final debenzylation was achieved with concentrated sulfuric acid to give the target sulfonamides 19/25 .  相似文献   

9.
A series of novel 4‐(4‐ethylphenyl)‐1‐substituted‐4H‐[1,2,4]triazolo[4,3‐a]quinazolin‐5‐ones were synthesized by the cyclization of 2‐hydrazino intermediate with various electrophile. The starting material 2‐hydrazino compound was synthesized from 2‐ethyl aniline by a new innovative route with improved yield. When tested for their in vivo H1‐antihistaminic activity on conscious guinea pigs, all the test compounds significantly protected the animals from histamine induced bronchospasm. The compound II emerged as the most active compound of the series and it is more potent (73.93% protection) when compared to the reference standard, chlorpheniramine maleate (71% protection), it showed negligible sedation (10%) when compared to chlorpheniramine maleate (30%). Therefore compound II will serve as prototype molecule for further development as a new class of H1‐antihistamines  相似文献   

10.
The reaction of 4‐amino‐5‐methyl‐1, 2, 4‐triazol‐3(2H)‐thione (HAMTT, 1 ) with cadmium(II) acetate in ethanol leads to [Cd(η2‐AMTT)2(H2O)2] ( 2 ); the reaction of 2 with nitric acid in ethanol produces the single‐crystals of [Cd(η2‐HAMTT)2(H2O)2](NO3)2 ( 3 ). 2 and 3 have been characterized by IR, Raman, 1H NMR spectroscopy and elemental analyses; furthermore, 3 has been determined by single‐crystal X‐ray diffraction studies. 3 crystallizes in the space group Pbcn, orthorhombic with the lattice dimensions at —80 °C; a = 1604.2(1), b = 895.6(1), c = 1266.5(3) pm, Z = 4, R1= 0.0276, wR2= 0.0722.  相似文献   

11.
A series of triorganotin (4H‐1,2,4‐triazol‐4‐yl)benzoates have been synthesized by the reaction of 4‐(4H‐1,2,4‐triazol‐4‐yl)benzoic acid and 3‐(4H‐1,2,4‐triazol‐4‐yl)benzoic acid with (R3Sn)2O (R = Et, n‐Bu and Ph) or R′3SnOH (R′ = p‐tolyl and cyclohexyl). The molecular structure of tri(p‐tolyl)tin 3‐(4H‐1,2,4‐triazol‐4‐yl)benzoate determined by X‐ray crystallography displays that the tin atom adopts a five‐coordinate distorted trigonal bipyramidal geometry with the carboxyl oxygen atom and the nitrogen atom on 1‐position of triazole ring occupying the apical position. Moreover, this complex forms a polymeric chain by the intermolecular Sn–N interactions. All these complexes show good antifungal activities in vitro against Alternaria solani, Cercospora arachidicola, Gibberella zeae, Physalospora piricola, and Botrytis cinerea. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 20:411–417, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20566  相似文献   

12.
By means of regioselective S‐alkylation of 1H‐1,2,4‐triazole‐3‐thiol ( 1 ), a series of S‐substituted derivatives 2a‐j were synthesized. In certain conditions, the reaction of 2 with arylsulfochlorides, arylisocyanates, and quaternary ammonium salts of azines corresponding compounds were obtained 1‐arylsulfonyl‐ (3a‐d) , 1‐arylcarbonamido‐ ( 4a,b ), and 1‐azinyl‐1,2,4‐ ( 6a‐p ) triazoles. Structures of compounds were confirmed by 1H NMR and elemental analyses. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 20:405–410, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20565  相似文献   

13.
Fourteen new 1H‐1,2,4‐triazole derivatives containing pyridine moiety were synthesized by condensation of 1‐(pyridine‐3‐yl)‐2‐(1H‐1,2,4‐triazol‐1‐yl)ethanone with aryl aldehydes, and their reaction conditions were studied. The title compounds were screened for their antibacterial and plant growth regulatory activities. The screening data revealed that most of the compounds showed some antifungal and plant growth regulatory activities. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:376–380, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20308  相似文献   

14.
An efficient general route to the synthesis of 5‐substituted 1H‐1,2,4‐triazole‐3‐carboxylates was developed. N‐acylamidrazones were obtained from carboxylic acid hydrazides and ethyl thiooxamate or ethyl 2‐ethoxy‐2‐iminoacetate hydrochloride and then were reacted with chloroanhydride of the same carboxylic acid. As the next step, diacylamidrazones were cyclized to 5‐substituted 1H‐1,2,4‐triazole‐3‐carboxylates one pot in mild conditions.  相似文献   

15.
The title structures, both C10H10N4O, are substitutional isomers. The N—N bond lengths are longer and the C=N bond lengths are shorter by ca 0.025 Å than the respective average values in the C=N—N=C group of asymmetric triazines; the assessed respective bond orders are 1.3 and 1.7. There are N—H⋯O and N—H⋯N hydrogen bonds in both structures, with 4‐­amino‐3‐methyl‐6‐phenyl‐1,2,4‐triazin‐5(4H)‐one containing a rare bifurcated N—H⋯N,N hydrogen bond. The structures differ in their mol­ecular stacking and the hydrogen‐bonding patterns.  相似文献   

16.
Several 4‐substituted‐3, 5‐bis(2‐pyridyl)‐1H‐pyrazoles, where the substituent is chloro, bromo, iodo, nitro, diazo, were synthesized under mild reaction conditions in high yields. The structures of the products were characterized by 1H NMR, 13C NMR, ESI‐MS, IR and elemental analyses.  相似文献   

17.
The study reports the synthesis of complexes Co(HL)Cl2 ( 1 ), Ni(HL)Cl2 ( 2 ), Cu(HL)Cl2 ( 3 ), and Zn(HL)3Cl2 ( 4 ) with the title ligand, 5‐(pyrazin‐2‐yl)‐1,2,4‐triazole‐5‐thione (HL), and their characterization by elemental analyses, ESI‐MS (m/z), FT‐IR and UV/Vis spectroscopy, as well as EPR in the case of the CuII complex. The comparative analysis of IR spectra of the metal ion complexes with HL and HL alone indicated that the metal ions in 1 , 2 , and 3 are chelated by two nitrogen atoms, N(4) of pyrazine and N(5) of triazole in the thiol tautomeric form, whereas the ZnII ion in 4 is coordinated by the non‐protonated N(2) nitrogen atom of triazole in the thione form. pH potentiometry and UV/Vis spectroscopy were used to examine CoII, NiII, and ZnII complexes in 10/90 (v/v) DMSO/water solution, whereas the CuII complex was examined in 40/60 (v/v) DMSO/water solution. Monodeprotonation of the thione triazole in solution enables the formation of the L:M = 1:1 species with CoII, NiII and ZnII, the 2:1 species with CoII and ZnII, and the 3:1 species with ZnII. A distorted tetrahedral arrangement of the CuII complex was suggested on the basis of EPR and Vis/NIR spectra.  相似文献   

18.
The “click chemistry” of using organic azides and terminal alkynes is arguably the most efficient and straightforward route to the synthesis of 1,2,3‐triazoles. In this paper, an alternative and direct access to ethyl 1‐(4‐methoxyphenyl)‐5‐phenyl‐1H‐1,2,3‐triazole‐4‐carboxylate is described. Treatment of ethyl diazoacetate with 4‐methoxyaniline derived aryl imines in the presence of 1,8‐diazabicyclo[5.4.0]undec‐7‐ene provided fully substituted 1,2,3‐triazoles in good to high chemical yields. The base‐mediated reaction tolerates various substituted phenyl imines as well as ethyl diazoacetate or the more bulky diazoacetamide. A reasonable mechanism is proposed that involves the addition of an imine nitrogen atom to the terminal nitrogen atom of the diazo compound, followed by aromatization to give the 1,2,3‐triazole. The presence of the 4‐carboxy group is advantageous as it can be easily transformed into other functional groups.  相似文献   

19.
The copper(II) environments for tetra­kis­(1‐eth­yl‐1,2,4‐triaz­ole)­dinitratocopper(II), [Cu(NO3)2(C4H7N3)4], and tetrakis­(1‐prop­yl‐1,2,4‐triazole)dinitratocopper(II), [Cu(NO3)2(C5H9N3)4], are distorted square bipyramidal. Both structures are centrosymmetric, with the copper(II) ions located at inversion centers coordinated by four N atoms of four triazole mol­ecules and by two O atoms of two nitrate ions in an elongated octa­hedral geometry. This elongation is a result of the Jahn–Teller effect. The largest distortion is that of the N—Cu—O angles, which differ from 90° by 5.68 (10)° in the eth­yl and 5.59 (8)° in the prop­yl derivative.  相似文献   

20.
Synthesis of some new triazoles fused to triazoles 5a–c or thiadiazoles 6a–c and the thiol‐thione tautomeric equilibrium study of the title compounds are reported. The “rule of five” and complementary criteria of pharmacokinetic properties were determined to predict whether these compounds are orally bioavailable. Semiempirical parameterizations have been critically benchmarked for the thiol‐thione tautomeric equilibrium against the DFT calculations. It was shown that unlike the AM1 and PM3 Hamiltonians, which erroneously predict higher stability of the thiol tautomer, the newly developed RM1 Hamiltonian, on the other hand, predicts energetics of this equilibrium in excellent agreement with the DFT results. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:713–718, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20499  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号