首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article highlights some of the recent developments in the use of responsive cyclen based lanthanide luminescent devices, focusing on Eu(III), Tb(III), Nd(III) and Yb(III) complexes, where the photophysical properties, such as the excited state lifetimes, quantum yield/intensity and emission polarisation are modulated by the local chemical environment, e.g. ions and molecules, or through self-assembly of either f-f or mixed f-d cyclen complexes.  相似文献   

2.
Chelating ligands based on polydentate diamides of 2,2'-bipyridyl-6,6'-dicarboxylic acid with a high affinity for lanthanide ions have been synthesized. The effect of the size of lipophilic aliphatic substituents in the ligand on the photophysical characteristics of europium complexes in acetonitrile solutions and in the solid state, as well as on the morphology of thin films obtained by the spin-coating method, was studied. The external and internal luminescence quantum yields have been measured, the luminescence lifetimes at 300 and 77 K were determined, and the sensitization efficiency values for europium complexes were calculated. The phosphorescence of gadolinium(III) complexes was used to determine the energy difference between the triplet level of the ligand and the resonance level of europium.  相似文献   

3.
Novel EuIII complexes with bidentate phosphine oxide ligands containing a bipyridine framework, i.e., [3,3′‐bis(diphenylphosphoryl)‐2,2′‐bipyridine]tris(hexafluoroacetylacetonato)europium(III) ([Eu(hfa)3(BIPYPO)]) and [3,3′‐bis(diphenylphosphoryl)‐6,6′‐dimethyl‐2,2′‐bipyridine]tris(hexafluoroacetylacetonato)europium(III) ([Eu(hfa)3(Me‐BIPYPO)]), were synthesized for lanthanide‐based sensor materials having high emission quantum yields and effective chemosensing properties. The emission quantum yields of [Eu(hfa)3(BIPYPO)] and [Eu(hfa)3(Me‐BIPYPO)] were 71 and 73%, respectively. Metal‐ion sensing properties of the EuIII complexes were also studied by measuring the emission spectra of EuIII complexes in the presence of ZnII or CuII ions. The metal‐ion sensing and the photophysical properties of luminescent EuIII complexes with a bidentate phosphine oxide containing 2,2′‐bipyridine framework are demonstrated for the first time.  相似文献   

4.
Four kinds of luminescent hybrid soft gels have been assembled by introducing the lanthanide (Eu3+, Tb3+) tetrakis β‐diketonate into the covalently bonded imidazolium‐based silica through electrostatic interactions. Here, the imidazolium‐based silica matrices are prepared from imidazolium‐derived organotriethoxysilanes by the sol–gel process, in which the imidazolium cations are strongly anchored within the silica matrices while anions can still be exchanged following application for functionalization of lanthanide complexes. The photoluminescence measurements indicated that these hybrid soft gels exhibit characteristic red and green luminescence originating from the corresponding ternary lanthanide ions (Eu3+, Tb3+). Further investigation of photophysical properties reveals that these soft gels have inherited the outstanding luminescent properties from the lanthanide tetrakis β‐diketonate complexes such as strong luminescence intensities, long lifetimes and high luminescence quantum efficiencies.  相似文献   

5.
Lanthanide complexes have been developed and are reported herein. These complexes were derived from a terpyridine-functionalized calix[4]arene ligand, chelated with Tb3+ and Eu3+. Synthesis of these complexes was achieved in two steps from a calix[4]arene derivative: (1) amide coupling of a calix[4]arene bearing carboxylic acid functionalities and (2) metallation with a lanthanide triflate salt. The ligand and its complexes were characterized by NMR (1H and 13C), fluorescence and UV-vis spectroscopy as well as MS. The photophysical properties of these complexes were studied; high molar absorptivity values, modest quantum yields and luminescence lifetimes on the ms timescale were obtained. Anion binding results in a change in the photophysical properties of the complexes. The anion sensing ability of the Tb(III) complex was evaluated via visual detection, UV-vis and fluorescence studies. The sensor was found to be responsive towards a variety of anions, and large binding constants were obtained for the coordination of anions to the sensor.  相似文献   

6.
The synthesis, structure, and photophysical properties of several Tb(III) complexes with octadentate, macrotricyclic ligands that feature a bicapped topology and 2-hydroxyisophthalamide (IAM) chelating units are reported. These Tb(III) complexes exhibit highly efficient emission (Φ(total) ≥ 50%), large extinction coefficients (ε(max) ≥ 20,000 M(-1) cm(-1)), and long luminescence lifetimes (τ(H(2)O) ≥ 2.45 ms) at dilute concentrations in standard biological buffers. The structure of the methyl-protected ligand was determined by single-crystal X-ray diffraction and confirms the macrotricyclic structure of the parent ligand; the amide groups of the methyl-protected cage compound generate an anion binding cavity that complexes a chloride anion. Once the ligand is deprotected, a conformational change generates a similar cavity, formed by the phenolate and ortho amide oxygen groups that strongly bind lanthanide ions. The Tb(III) complexes thus formed display long-term stability, with little if any change in their spectral properties (including lifetime, quantum yield, and emission spectrum) over time or in different chemical environments. Procedures to prepare functionalized derivatives with terminal amine, carboxylate, and N-hydroxysuccinimide groups suitable for derivatization and protein bioconjugation have also been developed. These bifunctional ligands have been covalently attached to a number of different proteins, and the terbium complexes' exceptional photophysical properties are retained. These compounds establish a new aqueous stability and quantum yield standard for long-lifetime lanthanide reporters.  相似文献   

7.
Lewis-base adducts of tris(β -diketonato)lanthanide(III) complexes were prepared, where the β -diketone is para -alkoxy-substituted 1,3-diphenyl-1,3-propanedione. These compounds are the first examples of liquid crystalline lanthanide complexes in which the mesomorphism is introduced via a β -diketonate ligand. Depending on the type of the Lewis base, the metallomesogens exhibit a monotropic smectic A or a monotropic highly ordered smectic phase. Intense photoluminescence was observed for the europium(III) complexes at room temperature.  相似文献   

8.
Lewis-base adducts of tris( β-diketonato)lanthanide(III) complexes were prepared, where the β-diketone is para -alkoxy-substituted 1,3-diphenyl-1,3-propanedione. These compounds are the first examples of liquid crystalline lanthanide complexes in which the mesomorphism is introduced via a β-diketonate ligand. Depending on the type of the Lewis base, the metallomesogens exhibit a monotropic smectic A or a monotropic highly ordered smectic phase. Intense photoluminescence was observed for the europium(III) complexes at room temperature.  相似文献   

9.
The synthesis of tris(2‐thenoyltrifluoroacetonate)lanthanide(III) complexes featuring a diethylaminostyryl‐2,2′‐bipyridine coligand was achieved for lanthanum; the near‐infrared (NIR) emitters neodymium, erbium, and ytterbium; and the transition‐metal yttrium. The photophysical properties were thoroughly studied, and it was demonstrated that the conjugated bipyridine ligand acts as a good antenna for the sensitization of the NIR emitters. The two‐photon absorption (TPA) properties of all five complexes were investigated by using both two‐photon excited fluorescence and the Z‐scan method. We demonstrate that the nature of the rare earth ion has almost no influence on the TPA properties centered on the conjugated bipyridyl ligand. Finally, we show that YbIII is sensitized by a two‐photon antenna effect, and that NdIII is mostly sensitized by a one‐photon process involving direct excitation of forbidden f–f transitions.  相似文献   

10.
A new terbium sensitized spectrofluorimetric method was developed for the determination of trace amounts of dopamine (DA) using ethylenediaminetetraacetic acid as co-ligand and cetyltrimethylammonium chloride as sensitizer. UV absorption and fluorescent spectra were used to investigate the photophysical properties of the ternary complex. Under the optimum conditions, the enhanced fluorescence intensities of the Tb(III) complexes increased linearly with the concentration of DA over the ranges 8 × 10–8–5 × 10–5 M and the limit of detection for DA was found to be 2.4 × 10–8 M. The proposed method has been applied for the quantitative determination of DA in a pharmaceutical preparation and urine samples. The possible energy transfer mechanisms in the lanthanide complexes were discussed.  相似文献   

11.
A bi-phosphonate ligand tetraethyl-(2,3,5,6-tetramethyl-1,4-phenylene) bis(methylene)diphosphonate has been designed and synthesized. The bi-phosphonate as a bridging ligand reacts with lanthanide nitrates forming four different types of 1D coordination complexes: ribbon polymer (type I), semi-ribbon polymer (type II), zigzag polymer (type III), and dinuclear-triligand short chain (type IV), which changed according to the decrease of the radius of the lanthanide. They have been characterized by IR spectroscopy, elemental analysis, and X-ray diffraction spectroscopy. The photophysical properties of Sm(3+), Eu(3+), Tb(3+) and Dy(3+) complexes at room temperature were also investigated. They exhibit strong fluorescence by excitation of the Ln(3+) ion absorption bands and the quantum yield values of Eu(3+) and Tb(3+) complexes are no less than 20%.  相似文献   

12.
We report the design, synthesis, and application of a (N^C^C)‐ligand framework able to stabilize highly electron‐deprived gold(III) species. This novel platform enabled the preparation of C(sp2)‐gold(III) fluorides for the first time in monomeric, easy‐to‐handle, bench‐stable form by a Cl/F ligand‐exchange reaction. Devoid of oxidative conditions or stoichiometric use of toxic Hg salts, this method was applied to the preparation of multiple [C(sp2)‐AuIII‐F] complexes, which were used as mechanistic probes for the study of the unique properties and intrinsic reactivity of Au? F bonds. The improved photophysical properties of [(N^C^C)AuIII] complexes compared to classical pincer (C^N^C)‐Au systems paves the way for the design of new late‐transition‐metal‐based OLEDs.  相似文献   

13.
We have designed two novel dendrimers with cyclam cores with appended poly(amido amine) (PAMAM) dendrons, decorated at the periphery with four and eight dansyl chromophores, respectively. The photophysical properties of the dendrimers and their Nd3+ complexes have been investigated. The energy‐transfer efficiency to the lanthanide ions from these dendrimers has been studied as a function of the generation. It has been observed that an increase in the dendrimer generation as well as the number of amide units enhances the energy transfer to the lanthanide ion.  相似文献   

14.
In the search of remarkable anionic electroluminescent semiconductors to be applied in energy conversion devices such as Light Emitting Electrochemical Cells, we report the electronic, photophysical, and charge injection/transfer properties of a series of cyclometalated iridium(III) complexes through a DFT/TD‐DFT procedure. The proposed semiconductors involve bidentated ligands based on natural products (salicylic acid and boldine), and phenylpyridine and phenylpyrazole as the cyclometalating units. The proposed compounds emit in the range of 446 to 571 nm, where the boldine based compounds have red‐shifted emissions compared to their analogs with salicylic acid. Blue phosphors were obtained by the use of phenylpyrazole units; however, the ligand field is weak in these cases compared to the ligand field exerted by the phenylpyridine ligands. The latter allows the accessibility to the radiationless states for emitters below 495 nm as a result of the increased stability of the metal centered excited states; consequently, the luminescent quantum yield could be decreased. Conversely, the semiconductors with phenylpyridine units show a restricted accessibility to radiationless processes, which could result in emitters with a high luminescent quantum yield and low non‐radiative constants. Finally, the proposed anionic semiconductors show a better balance between hole/electron transfer rate compared to related cationic Ir(III) complexes; while, the easier hole‐electron injection is favored for semiconductors with salicylic acid and phenylpyridine units.  相似文献   

15.
Ernesto Brunet 《Tetrahedron》2005,61(28):6757-6763
New ionophores derived from 2,6-bis(N-pyrazolyl)pyridine and aceto/benzophenone have been synthesized and fully characterized. The lanthanide complexes of these new ligands were studied from their UV-vis and fluorescence data. Eu3+ and Tb3+ complexes were easily formed and their photophysical properties measured. In all cases, lanthanide emission lifetimes were in the range of ms albeit quantum yields were relatively low. Possible flaws in the energy-transfer mechanisms are discussed.  相似文献   

16.
Complexes of 4,10‐bis(phosphonomethyl)‐1,4,7,10‐tetraazacyclododecane‐1,7‐diacetic acid (trans‐H6do2a2p, H6 L ) with transition metal and lanthanide(III) ions were investigated. The stability constant values of the divalent and trivalent metal‐ion complexes are between the corresponding values of H4dota and H8dotp complexes, as a consequence of the ligand basicity. The solid‐state structures of the ligand and of nine lanthanide(III) complexes were determined by X‐ray diffraction. All the complexes are present as twisted‐square‐antiprismatic isomers and their structures can be divided into two series. The first one involves nona‐coordinated complexes of the large lanthanide(III) ions (Ce, Nd, Sm) with a coordinated water molecule. In the series of Sm, Eu, Tb, Dy, Er, Yb, the complexes are octa‐coordinated only by the ligand donor atoms and their coordination cages are more irregular. The formation kinetics and the acid‐assisted dissociation of several LnIII–H6 L complexes were investigated at different temperatures and compared with analogous data for complexes of other dota‐like ligands. The [Ce( L )(H2O)]3? complex is the most kinetically inert among complexes of the investigated lanthanide(III) ions (Ce, Eu, Gd, Yb). Among mixed phosphonate–acetate dota analogues, kinetic inertness of the cerium(III) complexes is increased with a higher number of phosphonate arms in the ligand, whereas the opposite is true for europium(III) complexes. According to the 1H NMR spectroscopic pseudo‐contact shifts for the Ce–Eu and Tb–Yb series, the solution structures of the complexes reflect the structures of the [Ce(H L )(H2O)]2? and [Yb(H L )]2? anions, respectively, found in the solid state. However, these solution NMR spectroscopic studies showed that there is no unambiguous relation between 31P/1H lanthanide‐induced shift (LIS) values and coordination of water in the complexes; the values rather express a relative position of the central ions between the N4 and O4 planes.  相似文献   

17.
The near‐infrared (NIR) luminescence efficiency of lanthanide complexes is largely dependent on the electronic and photophysical properties of antenna ligands. Although porphyrin ligands are efficient sensitizers of lanthanide NIR luminescence, non‐pyrrolic porphyrin analogues, which have unusual symmetry and electronic states, have been much less studied. In this work, we used porpholactones, a class of β‐pyrrolic‐modified porphyrins, as ligands and investigated the photophysical properties of lanthanide porpholactones Yb‐1 a – 5 a . Compared with Yb porphyrin complexes, the porpholactone complexes displayed remarkable enhancement of NIR emission (50–120 %). Estimating the triplet‐state levels of porphyrin and porpholactone in Gd complexes revealed that β‐lactonization of porphyrinic ligands lowers the ligand T1 state and results in a narrow energy gap between this state and the lowest excited state of Yb3+. Transient absorption spectra showed that YbIII porpholactone has a longer transient decay lifetime at the Soret band than the porphyrin analogue (30.8 versus 17.0 μs). Thus, the narrower energy gap and longer lifetime arising from β‐lactonization are assumed to enhance NIR emission of Yb porpholactones. To demonstrate the potential applications of Yb porpholactone, a water‐soluble Yb bioprobe was constructed by conjugating glucose to Yb ‐ 1 a . Interestingly, the NIR emission of this Yb porpholactone could be specifically switched on in the presence of glucose oxidase and then switched off by addition of glucose. This is the first demonstration that non‐pyrrolic porphyrin ligands enhance the sensitization efficiency of lanthanide luminescence and also display switchable NIR emission in the region of biological analytes (800–1400 nm).  相似文献   

18.
The synthesis, linear photophysical, two‐photon absorption (2PA), femtosecond transient absorption, and superfluorescence properties of a new symmetrical squaraine derivative ( 1 ) are reported. Steady‐state linear spectral and photochemical properties, fluorescence lifetimes, and excitation anisotropy of 1 were investigated in various organic solvents. High fluorescence quantum yields (≈0.7) and very high photostability (photodecomposition quantum yields ≈10?6–10?8) were observed. An open‐aperture Z‐scan method was used to obtain 2PA spectra of 1 over a broad spectral range (maximum 2PA cross section ≈1000 GM). Excited‐state absorption (ESA) and gain was observed by femtosecond transient absorption spectroscopy, in which both reached a maximum at approximately 500 fs. Squaraine 1 exhibits efficient superfluorescence. The quantum chemical study of 1 revealed the simulated vibronic nature of the 1PA and 2PA spectra were in good agreement with experimental data; this may provide the ability to predict potential advanced photonic materials.  相似文献   

19.
The sequential reaction of a multisite coordinating compartmental ligand [2‐(2‐hydroxy‐3‐(hydroxymethyl)‐5‐methylbenzylideneamino)‐2‐methylpropane‐1,3‐diol] (LH4) with appropriate lanthanide salts followed by the addition of [Mg(NO3)2] ? 6 H2O or [Zn(NO3)2] ? 6 H2O in a 4:1:2 stoichiometric ratio in the presence of triethylamine affords a series of isostructural heterometallic trinuclear complexes containing [Mg2Ln]3+ (Ln=Dy, Gd, and Tb) and [Zn2Ln]3+ (Ln=Dy, Gd, and Tb) cores. The formation of these complexes is demonstrated by X‐ray crystallography as well as ESI‐MS spectra. All complexes are isostructural possessing a linear trimetallic core with a central lanthanide ion. The comprehensive studies discussed involve the synthesis, structure, magnetism, and photophysical properties on this family of trinuclear [Mg2Ln]3+ and [Zn2Ln]3+ heterometallic complexes. [Mg2Dy]3+ and [Zn2Dy]3+ show slow relaxation of the magnetization below 12 K under zero applied direct current (dc) field, but without reaching a neat maximum, which is due to the overlapping with a faster quantum tunneling relaxation mediated through dipole–dipole and hyperfine interactions. Under a small applied dc field of 1000 Oe, the quantum tunneling is almost suppressed and temperature and frequency dependent peaks are observed, thus confirming the single‐molecule magnet behavior of complexes [Mg2Dy]3+ and [Zn2Dy]3+.  相似文献   

20.
In view of increasing demands for efficient photosensitizers for photodynamic therapy (PDT), we herein report the synthesis and photophysical characterizations of new chlorin e6 trimethyl ester and protoporphyrin IX dimethyl ester dyads as free bases and ZnII complexes. The synthesis of these molecules linked at the β‐pyrrolic positions to pyrano[3,2‐c]coumarin, pyrano[3,2‐c]quinolinone, and pyrano[3,2‐c]naphthoquinone moieties was performed by using the domino Knoevenagel hetero Diels–Alder reaction. The α‐methylenechromanes, α‐methylenequinoline, and ortho‐quinone methides were generated in situ from a Knoevenagel reaction of 4‐hydroxycoumarin, 4‐hydroxy‐6‐methylcoumarin, 4‐hydroxy‐N‐methylquinolinone, and 2‐hydroxy‐1,4‐naphthoquinone, respectively, with paraformaldehyde in dioxane. All the dyads as free bases and as ZnII complexes were obtained in high yields. All new compounds were fully characterized by 1D and 2D NMR techniques, UV/Vis spectroscopy, and HRMS. Their photophysical properties were evaluated by measuring the fluorescence quantum yield, the singlet oxygen quantum yield by luminescence detection, and also the triplet lifetimes were correlated by flash photolysis and intersystem crossing (ISC) rates. The fluorescence lifetimes were measured by a time‐correlated single photon count (TCSPC) method, fluorescence decay associated spectra (FDAS), and anisotropy measurements. Magnetic circular dichroism (MCD) and circular dichroism (CD) spectra were recorded for one ZnII complex in order to obtain information, respectively, on the electronic and conformational states, and interpretation of these spectra was enhanced by molecular orbital (MO) calculations. Electrochemical studies of the ZnII complexes were also carried out to gain insights into their behavior for such applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号