首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The C3‐symmetrical [60]fullerene‐cyclotriveratrylene (CTV) tris‐adducts (±)‐ 1 (with a trans‐3,trans‐3,trans‐3 addition pattern) and (±)‐ 2 (with an e,e,e addition pattern) were prepared in 11 and 9% yield, respectively, by the regio‐ and diastereoselective tether‐directed Bingel reaction of C60 with the tris‐malonate‐appended CTV derivative (±)‐ 3 (Scheme). This is the first example for tris‐adduct formation by a one‐step tether‐directed Bingel addition. Interchromophoric interactions between the electron‐rich CTV cap and the electron‐attracting fullerene moiety have a profound effect on the electrochemical behavior of the C‐sphere (Fig. 4 and Table 1). The fullerene‐centered first reduction potentials in compounds (±)‐ 1 and (±)‐ 2 are by 100 mV more negative than those of their corresponding tris[bis(ethoxycarbonyl)methano][60]fullerene analogs that lack the CTV cap. A particular interest in (±)‐ 1 and (±)‐ 2 arises from the topological chirality of these molecules. A complete topology study is presented, leading to the conclusion that the four possible classical stereoisomers of the e,e,e regioisomer are topologically different, and, therefore, there exist four different topological stereoisomers (Fig. 6). Interestingly, in the case of the trans‐3,trans‐3,trans‐3 tris‐adduct, there are four classical stereoisomers but only two topological stereoisomers (Fig. 7). An example of a target molecule representing a topological meso‐form is also presented (Fig. 8).  相似文献   

2.
In the adduct 1,2‐bis(4‐pyridyl)­ethane–1,1,1‐tris(4‐hydroxy­phenyl)­ethane (1/2), C12H12N2·2C20H18O3, the bipyridyl component lies across an inversion centre in P. The tris‐phenol mol­ecules [systematic name: 4,4′,4′′‐(ethane‐1,1,1‐triyl)­triphenol] are linked by O—H?O hydrogen bonds to form sheets built from R(38) rings, and symmetry‐related pairs of sheets are linked by the bipyridyl mol­ecules via O—H?N hydrogen bonds to form open bilayers. Each bilayer is interwoven with two adjacent bilayers, forming a continuous three‐dimensional structure. In the adduct 1,2‐bis(4‐pyridyl)­ethene–1,1,1‐tris(4‐hydroxy­phenyl)­ethane–methanol (1/1/1), C12H10N2·C20H18O3·CH4O, the mol­ecules are linked by O—H?O and O—H?N hydrogen bonds into three interwoven three‐dimensional frameworks, generated by single spiral chains along [010] and [001] and a triple‐helical spiral along [100].  相似文献   

3.
The synthesis and characterization of three new dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine] compounds are reported, together with the crystal structures of two of them. (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐Chlorophenyl)‐1‐hexyl‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C28H30ClN3O2S2, (I), (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐chlorophenyl)‐1‐benzyl‐5‐methyl‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C30H26ClN3O2S2, (II), and (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐chlorophenyl)‐5‐fluoro‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C22H17ClFN3O2S2, (III), were each isolated as a single regioisomer using a one‐pot reaction involving l ‐proline, a substituted isatin and (Z)‐5‐(4‐chlorobenzylidene)‐2‐sulfanylidenethiazolidin‐4‐one [5‐(4‐chlorobenzylidene)rhodanine]. The compositions of (I)–(III) were established by elemental analysis, complemented by high‐resolution mass spectrometry in the case of (I); their constitutions, including the definition of the regiochemistry, were established using NMR spectroscopy, and the relative configurations at the four stereogenic centres were established using single‐crystal X‐ray structure analysis. A possible reaction mechanism for the formation of (I)–(III) is proposed, based on the detailed stereochemistry. The molecules of (I) are linked into simple chains by a single N—H…N hydrogen bond, those of (II) are linked into a chain of rings by a combination of N—H…O and C—H…S=C hydrogen bonds, and those of (III) are linked into sheets by a combination of N—H…N and N—H…S=C hydrogen bonds.  相似文献   

4.
In the crystal structures of four thiophene derivatives, (E)‐3′‐[2‐(anthracen‐9‐yl)ethenyl]‐2,2′:5′,2′′‐terthiophene, C28H18S3, (E)‐3′‐[2‐(1‐pyrenyl)ethenyl]‐2,2′:5′,2′′‐terthiophene, C30H18S3, (E)‐3′‐[2‐(3,4‐dimethoxyphenyl)ethenyl]‐2,2′:5′,2′′‐terthiophene, C22H18O2S3, and (E,E)‐1,4‐bis[2‐(2,2′:5′,2′′‐terthiophen‐3′‐yl)ethenyl]‐2,5‐dimethoxybenzene, C36H26O2S6, at least one of the terminal thiophene rings is disordered and the disorder is of the flip type. The terthiophene fragments are far from being coplanar, contrary to terthiophene itself. The central C—C=C—C fragments are almost planar but the bond lengths suggest slight delocalization within this fragment. The crystal packing is determined by van der Waals interactions and some weak, relatively short, C—H...S and C—H...π directional contacts.  相似文献   

5.
Two spiro[indoline‐3,3′‐pyrrolizine] derivatives have been synthesized in good yield with high regio‐ and stereospecificity using one‐pot reactions between readily available starting materials, namely l ‐proline, substituted 1H‐indole‐2,3‐diones and electron‐deficient alkenes. The products have been fully characterized by elemental analysis, IR and NMR spectroscopy, mass spectrometry and crystal structure analysis. In (1′RS ,2′RS ,3SR ,7a′SR )‐2′‐benzoyl‐1‐hexyl‐2‐oxo‐1′,2′,5′,6′,7′,7a′‐hexahydrospiro[indoline‐3,3′‐pyrrolizine]‐1′‐carboxylic acid, C28H32N2O4, (I), the unsubstituted pyrrole ring and the reduced spiro‐fused pyrrole ring adopt half‐chair and envelope conformations, respectively, while in (1′RS ,2′RS ,3SR ,7a′SR )‐1′,2′‐bis(4‐chlorobenzoyl)‐5,7‐dichloro‐2‐oxo‐1′,2′,5′,6′,7′,7a′‐hexahydrospiro[indoline‐3,3′‐pyrrolizine], which crystallizes as a partial dichloromethane solvate, C28H20Cl4N2O3·0.981CH2Cl2, (II), where the solvent component is disordered over three sets of atomic sites, these two rings adopt envelope and half‐chair conformations, respectively. Molecules of (I) are linked by an O—H…·O hydrogen bond to form cyclic R 66(48) hexamers of (S 6) symmetry, which are further linked by two C—H…O hydrogen bonds to form a three‐dimensional framework structure. In compound (II), inversion‐related pairs of N—H…O hydrogen bonds link the spiro[indoline‐3,3′‐pyrrolizine] molecules into simple R 22(8) dimers.  相似文献   

6.
The structures of new oxaindane spiropyrans derived from 7‐hydroxy‐3′,3′‐dimethyl‐3′H‐spiro[chromene‐2,1′‐isobenzofuran]‐8‐carbaldehyde (SP1), namely N‐benzyl‐2‐[(7‐hydroxy‐3′,3′‐dimethyl‐3′H‐spiro[chromene‐2,1′‐isobenzofuran]‐8‐yl)methylidene]hydrazinecarbothioamide, C27H25N3O3S, (I), at 120 (2) K, and N′‐[(7‐hydroxy‐3′,3′‐dimethyl‐3′H‐spiro[chromene‐2,1′‐isobenzofuran]‐8‐yl)methylidene]‐4‐methylbenzohydrazide acetone monosolvate, C27H24N2O4·C3H6O, (II), at 100 (2) K, are reported. The photochromically active Cspiro—O bond length in (I) is close to that in the parent compound (SP1), and in (II) it is shorter. In (I), centrosymmetric pairs of molecules are bound by two equivalent N—H...S hydrogen bonds, forming an eight‐membered ring with two donors and two acceptors.  相似文献   

7.
The diastereoselective synthesis of 6‐aroyl‐3,5‐diarylspiro[cyclohexa‐2,4‐diene‐1,2′2′,3′‐dihydro‐1′H‐benzo[e]indoles] 6 and ‐benzo[g]indoles] 7 from 2,4,6‐triarylpyrylium perchlorates 1 and in situ generated 2‐methylene‐2,3‐dihydro‐1H‐benzo[e]indoles 3 or ‐benzo[g]indoles 5 (anhydrobases of the corresponding 2‐methyl‐1H‐benzo[e]indolium perchlorates 2 and 2‐methyl‐3H‐benzo[g]indolium perchlorates 4 , respectively) in the presence of triethylamine/acetic acid in ethanol by a 2,5‐[C4+C2] pyrylium ring transformation is reported. Spectroscopic data of the transformation products and their mode of formation are discussed.  相似文献   

8.
Red phosphorescent iridium(III) complexes based on fluorine‐, phenyl‐, and fluorophenyl‐substituted 2‐arylquinoline ligands were designed and synthesized. To investigate their electrophosphorescent properties, devices were fabricated with the following structure: indium tin oxide (ITO)/4,4′,4′′‐tris[2‐naphthyl(phenyl)amino]triphenylamine (2‐TNATA)/4,4′‐bis[N‐(1‐naphthyl)‐N‐phenylamino]biphenyl (NPB)/4,4′‐bis(N‐carbazolyl)‐1,1′‐biphenyl (CBP): 8 % iridium (III) complexes/bathocuproine (BCP)/tris(8‐hydroxyquinolinato)aluminum (Alq3)/8‐hydroxyquinoline lithium (Liq)/Al. All devices, which use these materials showed efficient red emissions. In particular, a device exhibited a saturated red emission with a maximum luminance, external quantum efficiency, and luminous efficiency of 14200 cd m?2, 8.44 %, and 6.58 cd A?1 at 20 mA cm?2, respectively. The CIE (x, y) coordinates of this device are (0.67, 0.33) at 12.0 V.  相似文献   

9.
3‐tert‐Butyl‐7‐(4‐methoxybenzyl)‐4′,4′‐dimethyl‐1‐phenyl‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione, C31H37N3O3, (I), 3‐tert‐butyl‐7‐(2,3‐dimethoxybenzyl)‐4′,4′‐dimethyl‐1‐phenyl‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione, C32H39N3O4, (II), 3‐tert‐butyl‐4′,4′‐dimethyl‐7‐(3,4‐methylenedioxybenzyl)‐1‐phenyl‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione, C31H35N3O4, (III), and 3‐tert‐butyl‐4′,4′‐dimethyl‐1‐phenyl‐7‐(3,4,5‐trimethoxybenzyl)‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione ethanol 0.67‐solvate, C33H41N3O5·0.67C2H6O, (IV), all contain reduced pyridine rings having half‐chair conformations. The molecules of (I) and (II) are linked into centrosymmetric dimers and simple chains, respectively, by C—H...O hydrogen bonds, augmented only in (I) by a C—H...π hydrogen bond. The molecules of (III) are linked by a combination of C—H...O and C—H...π hydrogen bonds into a chain of edge‐fused centrosymmetric rings, further linked by weak hydrogen bonds into supramolecular arrays in two or three dimensions. The heterocyclic molecules in (IV) are linked by two independent C—H...O hydrogen bonds into sheets, from which the partial‐occupancy ethanol molecules are pendent. The significance of this study lies in its finding of a very wide range of supramolecular aggregation modes dependent on rather modest changes in the peripheral substituents remote from the main hydrogen‐bond acceptor sites.  相似文献   

10.
The title compounds, C22H22N4 and C24H26N4O2 [alternative names: 2,6‐dibenzyl‐2,3,6,7‐tetrahydro‐1H,5H‐dipyrrolo[3,4‐b; 3′,4′‐e]pyrazine and 2,6‐bis(4‐methoxybenzyl)‐2,3,6,7‐tetrahydro‐1H,5H‐dipyrolo[3,4‐b;3′,4′‐e]pyrazine], two 1,2,3,5,6,7‐hexa­hydro‐2,4,6,8‐tetra­aza‐s‐indacene derivatives, are both centrosymmetric and have similar S‐shaped structures. In the former, there are two independent mol­ecules (A and B), both of which possess Ci symmetry. These two mol­ecules are arranged such that the benzene ring substituent of mol­ecule B is directed towards the plane of the benzene ring substituent of mol­ecule A, with a dihedral angle of 55.4 (2)° between their planes. The shortest C—H⋯C distance is, however, only 3.21 (1) Å. In both compounds, the benzene ring substituents are almost perpendicular to the plane of the central pyrazine ring, and the pyrrolidine rings have perfect envelope conformations. In the crystal structures of both compounds, the mol­ecules pack in a herring‐bone arrangement.  相似文献   

11.
Addition of various amines to the 3,3‐bis(trifluoromethyl)acrylamides 10a and 10b gave the tripeptides 11a – 11f , mostly as mixtures of epimers (Scheme 3). The crystalline tripeptide 11f 2 was found to be the N‐terminal (2‐hydroxyethoxy)‐substituted (R,S,S)‐ester HOCH2CH2O‐D ‐Val(F6)‐MeLeu‐Ala‐OtBu by X‐ray crystallography. The C‐terminal‐protected tripeptide 11f 2 was condensed with the N‐terminus octapeptide 2b to the depsipeptide 12a which was thermally rearranged to the undecapeptide 13a (Scheme 4). The condensation of the epimeric tripeptide 11f 1 with the octapeptide 2b gave the undecapeptide 13b directly. The undecapeptides 13a and 13b were fully deprotected and cyclized to the [5‐[4,4,4,4′,4′,4′‐hexafluoro‐N‐(2‐hydroxyethoxy)‐D ‐valine]]‐ and [5‐[4,4,4,4′,4′,4′‐hexafluoro‐N‐(2‐hydroxyethoxy)‐L ‐valine]]cyclosporins 14a and 14b , respectively (Scheme 5). Rate differences observed for the thermal rearrangements of 12a to 13a and of 12b to 13b are discussed.  相似文献   

12.
A terpyridine derivative DPTP [di-(4-methylphenyl)-2,2':6',2"-terpyridine] was conveniently synthesized from 2-bromopyridine via halogen-dance reaction, Kharash coupling and Stille coupling reaction. Then its corresponding ruthenium complex Ru-DPTP [N,N,N-4,4''-di-(4-methy,phenyl)-2,2':6',2"-terpyridine-N,N,N-tris(is,-thi,cyanat,)- ruthenium(H) ammonium] was obtained and fully characterized by IR, UV-Vis, ESI MS and elemental analysis. The MLCT absorption band of Ru-DPTP was blue-shifted from 570 to 500 nm upon addition of Hg^2+. Among a series of surveyed metal ions, the complex showed a unique recognition to Hg^2+, indicating that it can be used as a selective colorimetric sensor for Hg^2+.  相似文献   

13.
Synthesis of Diastereo- and Enantioselectively Deuterated β,ε-, β,β-, β,γ- and γ,γ-Carotenes We describe the synthesis of (1′R, 6′S)-[16′, 16′, 16′-2H3]-β, εcarotene, (1R, 1′R)-[16, 16, 16, 16′, 16′, 16′-2H6]-β, β-carotene, (1′R, 6′S)-[16′, 16′, 16′-2H3]-γ, γ-carotene and (1R, 1′R, 6S, 6′S)-[16, 16, 16, 16′, 16′, 16′-2H6]-γ, γ-carotene by a multistep degradation of (4R, 5S, 10S)-[18, 18, 18-2H3]-didehydroabietane to optically active deuterated β-, ε- and γ-C11-endgroups and subsequent building up according to schemes \documentclass{article}\pagestyle{empty}\begin{document}${\rm C}_{11} \to {\rm C}_{14}^{C_{\mathop {26}\limits_ \to }} \to {\rm C}_{40} $\end{document} and C11 → C14; C14+C12+C14→C40. NMR.- and chiroptical data allow the identification of the geminal methyl groups in all these compounds. The optical activity of all-(E)-[2H6]-β,β-carotene, which is solely due to the isotopically different substituent not directly attached to the chiral centres, is demonstrated by a significant CD.-effect at low temperature. Therefore, if an enzymatic cyclization of [17, 17, 17, 17′, 17′, 17′-2H6]lycopine can be achieved, the steric course of the cyclization step would be derivable from NMR.- and CD.-spectra with very small samples of the isolated cyclic carotenes. A general scheme for the possible course of the cyclization steps is presented.  相似文献   

14.
An efficient and convenient synthesis of tris(arylazo) derivatives of novel heterocyclic ring system, namely, 1H‐bis‐imidazo[1,2‐b:2′,1′‐e]pyrazole, is described. The structures of the compounds prepared and their tautomeric structure were elucidated on the basis of their elemental analyses and spectral data in addition to correlation of their acidity constants by Hammett equation. The mechanism of the studied reactions and their site selectivity are discussed.  相似文献   

15.
The synthesis of fac‐[Ir{N,C1′‐(2,2′‐NC5H4C6H3‐5′‐C?C‐1‐C6H2‐3,5‐Et2‐4‐C?CC6H4‐4‐C?CH)}3] ( 10 ), which bears pendant ethynyl groups, and its reaction with [RuCl(dppe)2]PF6 to afford the heterobimetallic complex fac‐[Ir{N,C1′‐(2,2′‐NC5H4C6H3‐5′‐C?C‐1‐C6H2‐3,5‐Et2‐4‐C?CC6H4‐4‐C?C‐trans‐[RuCl(dppe)2])}3] ( 11 ) is described. Complex 10 is available from the two‐step formation of iodo‐functionalized fac‐tris[2‐(4‐iodophenyl)pyridine]iridium(III) ( 6 ), followed by ligand‐centered palladium‐catalyzed coupling and desilylation reactions. Structural studies of tetrakis[2‐(4‐iodophenyl)pyridine‐N,C1′](μ‐dichloro)diiridium 5 , 6 , fac‐[Ir{N,C1′‐(2,2′‐NC5H4C6H3‐5′‐C?C‐1‐C6H2‐3,5‐Et2‐4‐C?CH)}3] ( 8 ), and 10 confirm ligand‐centered derivatization of the tris(2‐phenylpyridine)iridium unit. Electrochemical studies reveal two ( 5 ) or one ( 6 – 10 ) Ir‐centered oxidations for which the potential is sensitive to functionalization at the phenylpyridine groups but relatively insensitive to more remote derivatization. Compound 11 undergoes sequential Ru‐centered and Ir‐centered oxidation, with the potential of the latter significantly more positive than that of Ir(N,C′‐NC5H4‐2‐C6H4‐2)3. Ligand‐centered π–π* transitions characteristic of the Ir(N,C′‐NC5H4‐2‐C6H4‐2)3 unit red‐shift and gain in intensity following the iodo and alkynyl incorporation. Spectroelectrochemical studies of 6 , 7 , 9 , and 11 reveal the appearance in each case of new low‐energy LMCT bands following formal IrIII/IV oxidation preceded, in the case of 11 , by the appearance of a low‐energy LMCT band associated with the formal RuII/III oxidation process. Emission maxima of 6 – 10 reveal a red‐shift upon alkynyl group introduction and arylalkynyl π‐system lengthening; this process is quenched upon incorporation of the ligated ruthenium moiety on proceeding to 11 . Third‐order nonlinear optical studies of 11 were undertaken at the benchmark wavelengths of 800 nm (fs pulses) and 532 nm (ns pulses), the results from the former suggesting a dominant contribution from two‐photon absorption, and results from the latter being consistent with primarily excited‐state absorption.  相似文献   

16.
The crystal structures of four cyclo­alkane­spiro‐4′‐imidazolidine‐2′,5′‐dithiones, namely cyclo­pentane­spiro‐4′‐imidazolidine‐2′,5′‐dithione {systematic name: 1,3‐diaza­spiro­[4.4]­nonane‐2,4‐dithione}, C7H10N2S2, cyclo­hexane­spiro‐4′‐imidazolidine‐2′,5′‐dithione {systematic name: 1,3‐diaza­spiro­[4.5]decane‐2,4‐dithione}, C8H12N2S2, cyclo­heptane­spiro‐4′‐imidazolidine‐2′,5′‐dithione {systematic name: 1,3‐diaza­spiro­[4.6]undecane‐2,4‐dithione}, C9H14N2S2, and cyclo­octane­spiro‐4′‐imidazolidine‐2′,5′‐dithione {systematic name: 1,3‐di­aza­spiro­[4.7]dodecane‐2,4‐dithione}, C10H16N2S2, have been determined. The three‐dimensional packing in all of the structures is based on closely similar chains, in which hydantoin moieties are linked through N—H⋯S hydrogen bonding. The size of the cyclo­alkane moiety influences the degree of its deformation. In the cyclo­octane compound, the cyclo­octane ring assumes both boat–chair and boat–boat conformations.  相似文献   

17.
In tris(4‐hydroxy­phenyl)­methane (or 4,4′,4′′‐methane­triyl­tri­phenol), C19H16O3, mol­ecules are connected by O—H⃛O hydrogen bonds [O⃛O = 2.662 (2) and 2.648 (2) Å] into two‐dimensional square networks that are twofold interpenetrated. In tris(4‐hydroxy­phenyl)­methane–4,4′‐bi­pyridine (1/1), C19H16O3·C10H8N2, trisphenol mol­ecules form rectangular networks via O—H⃛O [O⃛O = 2.694 (3) Å] and C—H⃛O [C⃛O = 3.384 (3) Å] hydrogen bonds. Bi­pyridine mol­ecules hydrogen bonded to phenol moieties [O⃛N = 2.622 (3) and 2.764 (3) Å] fill the voids to complete the structure.  相似文献   

18.
A variety of 3″,5″‐diaryl‐3″H,4′H‐dispiro[cyclohexane‐1,2′‐chromene‐3′,2″‐[1,3,4]thiadiazol]‐4′‐ones 3a‐c were synthesized regioselectively through the reaction of 4′H,5H‐trispiro[cyclohexane‐1,2′‐chromene‐3′,2″‐[1,3,4]oxadithiino[5,6‐c]chromene‐5″,1″′‐cyclohexan]‐4′‐one ( 1 ) with nitrilimines (generated in situ via triethylamine dehydrohalogenation of the corresponding hydrazonoyl chlorides 2a‐c ) in refluxing dry toluene. Single crystal X‐ray diffraction studies of 3a,b add support for the established structure. Similarly, 3′,5′‐diaryl‐2,2‐dimethyl‐3′H,4H‐spiro[chromene‐3,2′‐[1,3,4]thiadiazol]‐4‐ones 5a‐c were obtained in a regioselective manner through the reaction of 2,2,5′,5′‐tetramethyl‐4H,5′H‐spiro[chromene‐3,2′‐[1,3,4]oxadithiino[5,6‐c]chromen]‐4‐one ( 4a ) with nitrilimines under similar reaction conditions. On the other hand, reaction of 2,5′‐diethyl‐2,5′‐dimethyl‐4H,5′H‐spiro[chromene‐3,2′‐[1,3,4]oxadithiino‐[5,6‐c]chromen]‐4‐one ( 4b ) with nitrilimines in refluxing dry toluene afforded the corresponding 3′,5′‐diaryl‐2‐ethyl‐2‐methyl‐3′H,4H‐spiro[chromene‐3,2′‐[1,3,4]thiadiazol]‐4‐ones 5d‐f as two unisolable diastereoisomeric forms.  相似文献   

19.
A liquid‐crystalline mixed [5 : 1]hexa‐adduct of [60]fullerene was synthesized by addition of two different malonate derivatives onto C60. The hexa‐adduct derivative 2 was prepared by a stepwise synthetic procedure (fullerene→mono‐adduct of C60→hexa‐adduct of C60). Cyanobiphenyl and octyloxybiphenyl derivatives were selected as mesogens. The malonate derivatives showed either a monotropic nematic phase or a monotropic smectic A phase, and the hexa‐adduct derivative gave rise to an enantiotropic smectic A phase.  相似文献   

20.
The molecular structures of trichlorido(2,2′:6′,2′′‐terpyridine‐κ3N,N′,N′′)gallium(III), [GaCl3(C15H11N3)], and tribromido(2,2′:6′,2′′‐terpyridine‐κ3N,N′,N′′)gallium(III), [GaBr3(C15H11N3)], are isostructural, with the GaIII atom displaying an octahedral geometry. It is shown that the Ga—N distances in the two complexes are the same within experimental error, in contrast to expected bond lengthening in the bromide complex due to the lower Lewis acidity of GaBr3. Thus, masking of the Lewis acidity trends in the solid state is observed not only for complexes of group 13 metal halides with monodentate ligands but for complexes with the polydentate 2,2′:6′,2′′‐terpyridine donor as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号