首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zinc oxide nanoparticles (NanoZnO) uniformly dispersed in chitosan (CHIT) have been used to fabricate a hybrid nanocomposite film onto indium-tin-oxide (ITO) glass plate. Cholesterol oxidase (ChOx) has been immobilized onto this NanoZnO-CHIT composite film using physiosorption technique. Both NanoZnO-CHIT/ITO electrode and ChOx/NanoZnO-CHIT/ITO bioelectrode have been characterized using Fourier transform-infrared (FTIR), X-ray diffraction (XRD), cyclic voltammetry (CV), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) techniques, respectively. The ChOx/NanoZnO-CHIT/ITO bioelectrode exhibits linearity from 5 to 300 mg dl−1 of cholesterol with detection limit as 5 mg dl−1, sensitivity as 1.41 × 10−4 A mg dl−1 and the value of Michaelis-Menten constant (Km) as 8.63 mg dl−1. This cholesterol biosensor can be used to estimate cholesterol in serum samples.  相似文献   

2.
A chitosan (CS)‐tin oxide (SnO2) nanobiocomposite film has been deposited onto an indium‐tin‐oxide glass plate to immobilize cholesterol oxidase (ChOx) for cholesterol detection. The value of the Michaelis–Menten constant (Km) obtained as 3.8 mM for ChOx/CS‐SnO2/ITO is lower (8 mM) than that of a ChOx/CS/ITO bioelectrode revealing enhancement in affinity and/or activity of ChOx towards cholesterol and also revealing strong binding of ChOx onto CS‐SnO2/ITO electrode. This ChOx/CS‐SnO2/ITO cholesterol sensor retains 95% of enzyme activity after 4–6 weeks at 4 °C with response time of 5 s, sensitivity of 34.7 μA/mg dL?1 cm2 and detection limit of 5 mg/dL.  相似文献   

3.
The nanocomposite electrode comprising of polypyrrole (PPY) and carboxy functionalized multiwalled carbon nanotubes (MWCNT) has been electrochemically fabricated onto indium–tin–oxide (ITO) electrode using p‐toluene sulfonic acid (PTS). Cholesterol oxidase (ChOx) and cholesterol esterase (ChEt) have been immobilized onto this PPY– MWCNT/ITO nanocomposite electrode using N‐ethyl‐N‐(3‐dimethylaminopropyl) carbodiimide and N‐hydroxy succinimide chemistry for estimation of esterified cholesterol. The ChEt–ChOx/PPY–MWCNT/PTS/ITO bioelectrode has been characterized using Fourier transform infrared spectroscopy, electrochemical techniques, and scanning electron microscope. This ChEt–ChOx/PPY–MWCNT/PTS/ITO nanobioelectrode has a response time of about 9 s, linearity of 4 × 10?4 to 6.5 × 10?3 M/l of cholesterol oleate concentration, Km of 0.02 mM, and thermal stability of upto 45°C. This electrode exhibits improved biosensing characteristics compared with other total cholesterol electrodes reported in literature till date and can be used to estimate cholesterol in blood serum samples. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
《Electroanalysis》2004,16(23):1992-1998
A carbon nanotubes‐based amperometric cholesterol biosensor has been fabricated through layer‐by‐layer (LBL) deposition of a cationic polyelectrolyte (PDDA, poly(diallyldimethylammonium chloride)) and cholesterol oxidase (ChOx) on multi‐walled carbon nanotubes (MWNTs)‐modified gold electrode, followed by electrochemical generation of a nonconducting poly(o‐phenylenediamine) (PPD) film as the protective coating. Electrochemical impedance measurements have shown that PDDA/ChOx multilayer film could be formed uniformly on MWNTs‐modified gold electrode. Due to the strong electrocatalytic properties of MWNTs toward H2O2 and the low permeability of PPD film for electroacitve species, such as ascorbic acid, uric acid and acetaminophen, the biosensor has shown high sensitivity and good anti‐interferent ability in the detection of cholesterol. The effect of the pH value of the detection solution on the response of the biosensor was also investigated. A linear range up to 6.0 mM has been observed for the biosensor with a detection limit of 0.2 mM. The apparent Michaelis‐Menten constant and the maximum response current density were calculated to be 7.17 mM and 7.32 μA cm?2, respectively.  相似文献   

5.
A nanostructured iron oxide (NanoFe3O4, particle size ca. 25 nm and roughness ca. 21 nm) film deposited onto a hydrolyzed indium‐tin‐oxide (ITO) coated glass plate has been used to immobilize cholesterol oxidase (ChOx) to fabricate an impedimetric cholesterol sensor. Electrochemical studies reveal that surface charged Fe3O4 nanoparticles provide better conformation for ChOx loading resulting in enhanced electron transfer between ChOx and the electrode. Impedimetric response studies of the ChOx/NanoFe3O4/ITO bioelectrode exhibit improved linearity (2.5–400 mg/dL), low detection limit (0.25 mg/dL), fast response time (25 s), high sensitivity (86 Ω/mg dL?1/cm?2) and a low value of the Michaelis‐Menten constant (Km, 0.8 mg/dL) with a regression coefficient of 0.997.  相似文献   

6.
An electrode of hydrated tungsten oxide (WO3?nH2O) embedded chitosan‐co‐polyaniline (CHIT‐co‐PANI) composite was electrochemically prepared on an indium tin oxide (ITO) coated glass surface using mineral acid as a supporting electrolyte. The resulting CHIT‐co‐PANI/WO3?nH2O/ITO electrode was characterized using ultraviolet‐visible spectroscopy (UV‐vis), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV), and scanning electron microscopy (SEM). The composite electrode exhibited a three‐dimensional nanofibrous structure with the diameter of the nanofibers ranging from 20 to 100 nm. The CHIT‐co‐PANI/WO3?nH2O/ITO electrode allowed for the low potential detection of NO2 gas in acidic medium. The NO2 gas sensing characteristics were studied by measuring change in the current with respect to concentration and time. Using the CHIT‐co‐PANI/WO3?nH2O/ITO electrode, NO2 gas was detected electrochemically without interference at pH 2.0 and 0.25 V vs. Ag/AgCl. The current of the electrochemical cell with the CHIT‐co‐PANI/WO3?nH2O/ITO electrode decreased linearly with an increase in NO2 gas concentration in a range from 100 to 500 ppb with a response time of eight seconds.  相似文献   

7.
Polyaniline nanotube (PANI-NT) based films have been fabricated onto indium-tin-oxide (ITO) coated glass plates via electrophoretic technique. These PANI-NT/ITO electrodes have been utilized for covalent immobilization of cholesterol oxidase (ChOx) using glutaraldehyde (Glu) as cross-linker. Structural, morphological and electrochemical characterization of PANI-NT/ITO electrode and ChOx/Glu/PANI-NT/ITO bioelectrode have been done using FT-IR spectroscopy, SEM, electrochemical impedance spectroscopy and cyclic voltammetry techniques. Response studies of the ChOx/Glu/PANI-NT/ITO bioelectrode have been carried out using both linear sweep voltammetry and UV-Visible spectrophotometry. The results of the biosensing studies reveal that this bioelectrode can be used to detect cholesterol in wide detection range of 25-500 mg/dL with high sensitivity of 3.36 mA mg(-1) dL and fast response time of 30 s at pH 7.4. This bioelectrode exhibits very low value of Michaelis-Menten constant of 1.18 mM indicating enhanced interactions between cholesterol and ChOx immobilized onto this nanostructured PANI matrix.  相似文献   

8.
《Electroanalysis》2005,17(10):857-861
The carbon nanotubes decorated nanoplatinum (CNT‐Pt) were prepared using a chemical reduction method and a novel base electrode was constructed by intercalating CNT‐Pt on the surface of a waxed graphite electrode. The results showed that the nano‐particles of platinum at a waxed graphite electrode exhibits high catalytic activity for the reduction of hydrogen peroxide. The cholesterol oxidase (ChOx), chosen as a model enzyme, was immobilized with sol‐gel on the CNT‐Pt base electrode to construct a biosensor. The current response of the biosensor for cholesterol was very rapid (<20 s). The linear range for cholesterol measurement was 4.0×10?6 mol/L ?1.0×10?4 mol/L with a detection limit of 1.4×10?6 mol/L. The experiments also showed that the ChOx/sol‐gel/CNT‐Pt biosensor was sensitive and stable in detecting cholesterol in serum samples.  相似文献   

9.
Octadecanethiol (ODT) self-assembled monolayer (SAM) prepared onto gold-coated glass plate has been modified by using nitrene reaction of 1-fluoro-2-nitro-4-azidobenzene (FNAB) that further covalently binds to cholesterol oxidase (ChOx) via thermal reaction. FNAB acts as a bridge (cross-linker) between SAM and ChOx. The ChOx/FNAB/ODT/Au electrode thus fabricated has been characterized using contact angle (CA) measurements, UV-vis spectroscopy, electrochemical techniques and X-ray photoelectron spectroscopy (XPS) technique, respectively. This ChOx/FNAB/ODT/Au bioelectrode has been utilized for estimation of cholesterol in solution using surface plasmon resonance (SPR) technique. This SPR based cholesterol biosensor has linearity from 50 to 500 mg/dl of cholesterol in solution with lower detection limit of 50 mg/dl and shelf life of about 2 months when stored at 4 °C.  相似文献   

10.
Based on hemin‐MWCNTs nanocomposite and hemin‐catalyzed luminol‐H2O2 reaction, a sensitive electrogenerated chemiluminescence (ECL) cholesterol biosensor was proposed in this paper. Firstly, hemin‐MWCNTs was prepared via π–π stacking and modified on the surface of GCE. Subsequently, cholesterol oxidase (ChOx) was adsorbed on the modified electrode to achieve a cholesterol biosensor. Hemin‐MWCNTs nanocomposite provided the electrode with a large surface area to load ChOx, and endowed the nanostructured interface on the electrode surface to enhance the performance of biosensor. The biosensor responded to cholesterol in the linear range from 0.3 µM to 1.2 mM with a detection limit of 0.1 µM (S/N=3).  相似文献   

11.
Direct electrochemistry of cholesterol oxidase (ChOx) immobilized on the conductive poly‐3′,4′‐diamine‐2,2′,5′,2″‐terthiophene (PDATT) was achieved and used to create a cholesterol biosensor. A well‐defined redox peak was observed, corresponding to the direct electron transfer of the FAD/FADH2 of ChOx, and the rate constant (ks) was determined to be 0.75 s?1. Glutathione (GSH) covalently bonded with PDATT was used as a matrix for conjugating AuNPs, ChOx, and MP, simultaneously. MP co‐immobilized with ChOx on the AuNPs‐GSH/PDATT exhibited an excellent amperometric response to cholesterol. The dynamic range was from 10 to 130 μM with a detection limit of 0.3±0.04 μM.  相似文献   

12.
Cholesterol oxidase (ChOx) has been immobilized onto sol–gel derived nano-structured cerium oxide (NS-CeO2) film deposited on indium-tin-oxide (ITO) coated glass substrate. Phase identification of sol–gel NS-CeO2 film carried out using X-ray diffraction (XRD) yields reflection peak at 29.4° corresponding to (1 1 1) plane with oriented crystallite (34 nm) along c-axis normal to the substrate. Electrochemical studies reveal that NS-CeO2 provides electroactive surface for the loading of ChOx and enhances electron transfer rate in the ChOx/NS-CeO2/ITO bioelectrode. The low value of Michaelis–Menten constant (Km) obtained as 2.08 mM indicates enhanced ChOx affinity to cholesterol. The observed results show application of sol–gel derived NS-CeO2 for biosensing without any functionalization.  相似文献   

13.
《Electroanalysis》2017,29(12):2698-2707
A cholesterol biosensor based on cholesterol oxidase‐poly(diallyldimethylammonium chloride)‐carbon nanotubes‐nickel ferrite nanoparticles (ChOx‐PDDA‐CNTs‐NiFe2O4NPs) solution is easily fabricated by using a single dropping step on a glassy carbon electrode (GCE) surface. This technique is an alternative way to reduce complexity, cost and time to produce the biosensor. The uniformly dispersed materials on the electrode surface enhance the catalytic reaction of cholesterol oxidase and electron transfer from the oxidation of hydrogen peroxide in the system. The nickel ferrite nanoparticles were synthesized by co‐precipitation and calcination at various temperatures. These nanoparticles were then characterized using field emission scanning electron microscopy (FE‐SEM), energy‐dispersive X‐ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV) and X‐ray diffraction (XRD). The synthesized material calcined at 700 °C was well defined and presented the octahedral metal stretching with cubic NiFe2O4NPs phase. In cyclic voltammetric study, the ChOx‐PDDA‐CNTs‐NiFe2O4NPs/GCE showed 0.43 s−1 charge transfer rate constant (K s), 7.79×10−6 cm2 s−1 diffusion coefficient value (D ), 0.13 mm2 electroactive surface area (A e) and 3.58×10−8 mol cm−2 surface concentration ( ). This modified electrode exhibits stability in term of percent relative standard deviation (%RSD=0.62 %, n=10), reproducibility (%RSD=0.81, n=10), high sensitivity (25.76 nA per mg L−1 cm−2), linearity from 1 to 5,000 mg L−1 (R2=0.998) with a low detection limit (0.50 mg L−1). Its Michaelis‐Menten constant (K m) was 0.14 mM with 0.92 μA maximum current (I max) and demonstrated good selectivity without the effects of electroactive species such as ascorbic acid, glucose and uric acid. The cholesterol biosensor was successfully applied to determine cholesterol levels in human blood samples, showing promise due to its simplicity and availability.  相似文献   

14.
Fabrication of an amperometric cholesterol biosensor by co-immobilization of cholesterol esterase (ChEt) and cholesterol oxidase (ChOx) onto conducting polypyrrole (PPY) films using electrochemical entrapment technique is described. Electrochemical polymerization was carried out using a two-electrode cell configuration at 0.8 V. Characterization of resulting amperometric biosensor for the estimation of cholesterol has been experimentally determined in terms of linear response range, optimum pH, applied potential, temperature, and shelf-life. These PPY/ChEt/ChOx electrodes can be used for cholesterol ester estimation from 1 to 8 mM and have shelf-life of about 4 weeks at 4 °C during which about 15 estimations of cholesterol ester could be made. The sensitivity of PPY/ChEt/ChOx electrode has been found to be 0.15 μA/mM and the apparent Km value for this electrode is 9.8 mM. Conductivity of the polymer films found to be about 3×10−3 S/cm.  相似文献   

15.
Mediator free enzyme sensor has been fabricated by covalently immobilizing cholesterol oxidase (ChOx) onto 11‐mercaptoundecanoic acid functionalized gold nanoparticles (MUDA‐AuNPs) – octadecylamine (ODA) hybrid Langmuir–Blodgett film. The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) studies reveal that MUDA‐AuNP/ODA LB film has good affinity for ChOx and provides favorable microenvironment for direct electron transfer between enzyme and electrode. Interference free estimation of cholesterol has been realized at 0.3 V with linear range from 25 to 500 mg/dL, detection limit of 23.38 mg/dL, sensitivity of 1.085 μA mM?1 and response time of 20 s at pH 7.0.  相似文献   

16.
Cholesterol oxidase (ChOx) has been immobilized onto conducting poly[2-methoxy,5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV)/stearic acid (SA) Langmuir-Blodgett film transferred onto octadecanethiol (ODT) modified gold plate. The ChOx/MEH-PPV/SA LB film bioelectrode exhibits has been characterized by FT-IR, contact angle, and atomic force microscopy. The response of the ChOx/MEH-PPV/SA LB film bioelectrode carried out using differential pulse voltammetry (DPV) studies reveal linearity from 1.29 to 12.91 mM of cholesterol concentration and response time as 30 s. This ChOx/MEH-PPV/SA bioelectrode exhibits values of correlation coefficient as 0.9939, standard deviation as 0.0029 μA and limit of detection as 1.66 mM. UV-visible spectrophotometer studies reveal that 5.2 × 10−3 U of ChOx are actively working per cm2 area of ChOx/MEH-PPV/SA LB film bioelectrode and this bioelectrode is thermally stable upto 55 °C with reusability of about 60 times.  相似文献   

17.
Electrodeposited cobalt oxide (CoOx) nanomaterials are not only used for immobilization of cholesterol oxidase (ChOx) but also as electron transfer mediator for oxidation of H2O2 generated in the enzymatic reaction. Voltammetry and flow injection analysis (FIA) were used for determination of cholesterol. FIA determination of cholesterol with biosensors yielded a calibration curve with the following characteristics: linear range up to 50 μM, sensitivity of 43.5 nA μM?1 cm?2 and detection limit of 4.2 μM. The apparent Michaelis‐Menten constant and the response time of the biosensor are 0.49 mM and 15 s, respectively. This biosensor also exhibits good stability, reproducibility and long life time.  相似文献   

18.
The highly efficient H2O2 biosensor was fabricated on the basis of the complex films of hemoglobin (Hb), nano ZnO, chitosan (CHIT) dispersed solution and nano Au immobilized on glassy carbon electrode (GCE). Biocompatible ZnO‐CHIT composition provided a suitable microenvironment to keep Hb bioactivity (Michaelis‐Menten constant of 0.075 mmol L?1). The presence of nano Au in matrix could effectively enhance electron transfer between Hb and electrode. The electrochemical behaviors and effects of solution pH values were carefully examined in this paper. The (ZnO‐CHIT)‐Au‐Hb/GCE demonstrated excellently electrocatalytical ability for H2O2. This biosensor had a fast response to H2O2 less than 4 s and excellent linear relationships were obtained in the concentration range from1.94×10?7 to 1.73×10?3 mol L?1 with the detection limit of 9.7×10?8 mol L?1 (S/N=3) under the optimum conditions. Moreover, the stability and reproducibility of this biosensor were evaluated with satisfactory results.  相似文献   

19.
《Electroanalysis》2003,15(12):1031-1037
A cholesterol biosensors fabricated by immobilization of cholesterol oxidase (ChOx) in a layer of silicic sol‐gel matrix on the top of a Prussian Blue‐modified glassy carbon electrode was prepared. It is based on the detection of hydrogen peroxide produced by ChOx at ?0.05 V. The half‐lifetime of the biosensor is about 35 days. Cholesterol can be determined in the concentration range of 1×10?6?8×10?5 mol/L with a detection limit of 1.2×10?7 mol/L. Normal interfering compounds, such as ascorbic acid and uric acid do not affect the determination. The high sensitivity and outstanding selectivity are attributed to the Prussian Blue film modified on the sensor.  相似文献   

20.
李建平  彭图治 《中国化学》2002,20(10):1038-1043
IntroductionCholesterolisaveryimportantbioactivecompound .Numerousattemptshavebeenmadetocreatesensitive ,selective ,reliableandlowcostcholesterolsensorsduringthelastdecadebecauseofthesignificanceinclinicaldi agnosisofcoronaryheartdiseases ,arterioscleros…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号