首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 152 毫秒
1.
A parallel stabilized finite‐element/spectral formulation is presented for incompressible large‐eddy simulation with complex 2‐D geometries. A unique discretization scheme is developed consisting of a streamline‐upwind Petrov–Galerkin/Pressure‐Stabilized Petrov–Galerkin (SUPG/PSPG) finite‐element discretization in the 2‐D plane with a collocated spectral/pseudospectral discretization in the out‐of‐plane direction. This formulation provides an efficient approach for solving 3‐D flows over arbitrary 2‐D geometries. Utilizing this discretization and through explicit temporal treatment of the non‐linear terms, the system of equations for each Fourier mode is decoupled within each time step. A novel parallelization approach is then taken, where the computational work is partitioned in Fourier space. A validation of the algorithm is presented via comparison of results for flow past a circular cylinder with published values for Re=195, 300, and 3900. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
This paper considers the streamline‐upwind Petrov/Galerkin (SUPG) method applied to the compressible Euler and Navier–Stokes equations in conservation‐variable form. The spatial discretization, including a modified approach for interpolating the inviscid flux terms in the SUPG finite element formulation, is briefly reviewed. Of particular interest is the behavior of the shock‐capturing operator, which is required to regularize the scheme in the presence of strong, shock‐induced gradients. A standard shock‐capturing operator that has been widely used in previous studies by several authors is presented and discussed. Specific modifications are then made to this standard operator that is designed to produce a more physically consistent discretization in the presence of strong shock waves. The actual implementation of the term in a finite‐dimensional approximation is also discussed. The behavior of the standard and modified scheme is then compared for several supersonic/hypersonic flows. The modified shock‐capturing operator is found to preserve enthalpy in the inviscid portion of the flowfield substantially better than the standard operator. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

3.
The main purpose of this paper is to describe a finite element formulation for solving the equations for k and ε of the classical k–ε turbulence model, or any other two‐equation model. The finite element discretization is based on the SUPG method together with a discontinuity capturing technique to deal with sharp internal and boundary layers. The iterative strategy consists of several nested loops, the outermost being the linearization of the Navier–Stokes equations. The basic k–ε model is used for the implementation of an algebraic stress model that is able to account for the effects of rotation. Some numerical examples are presented in order to show the performance of the proposed scheme for simulating directly steady flows, without the need of reaching the steady state through a transient evolution. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
A space–time finite element method for the incompressible Navier–Stokes equations in a bounded domain in ?d (with d=2 or 3) is presented. The method is based on the time‐discontinuous Galerkin method with the use of simplex‐type meshes together with the requirement that the space–time finite element discretization for the velocity and the pressure satisfy the inf–sup stability condition of Brezzi and Babu?ka. The finite element discretization for the pressure consists of piecewise linear functions, while piecewise linear functions enriched with a bubble function are used for the velocity. The stability proof and numerical results for some two‐dimensional problems are presented. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
A numerical scheme for the simulation of blood flow and transport processes in large arteries is presented. Blood flow is described by the unsteady 3D incompressible Navier–Stokes equations for Newtonian fluids; solute transport is modelled by the advection–diffusion equation. The resistance of the arterial wall to transmural transport is described by a shear-dependent wall permeability model. The finite element formulation of the Navier–Stokes equations is based on an operator-splitting method and implicit time discretization. The streamline upwind/Petrov–Galerkin (SUPG) method is applied for stabilization of the advective terms in the transport equation and in the flow equations. A numerical simulation is carried out for pulsatile mass transport in a 3D arterial bend to demonstrate the influence of arterial flow patterns on wall permeability characteristics and transmural mass transfer. The main result is a substantial wall flux reduction at the inner side of the curved region. © 1997 John Wiley & Sons, Ltd.  相似文献   

6.
Introduction of a time‐accurate stabilized finite‐element approximation for the numerical investigation of weakly nonlinear and weakly dispersive water waves is presented in this paper. To make the time approximation match the order of accuracy of the spatial representation of the linear triangular elements by the Galerkin finite‐element method, the fourth‐order time integration of implicit multistage Padé method is used for the development of the numerical scheme. The streamline‐upwind Petrov–Galerkin (SUPG) method with crosswind diffusion is employed to stabilize the scheme and suppress the spurious oscillations, usually common in the numerical computation of convection‐dominated flow problems. The performance of numerical stabilization and accuracy is addressed. Treatments of various boundary conditions, including the open boundary conditions, the perfect reflecting boundary conditions along boundaries with irregular geometry, are also described. Numerical results showing the comparisons with analytical solutions, experimental measurements, and other published numerical results are presented and discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
In the present paper, the author shows that the predictor/multi‐corrector (PMC) time integration for the advection–diffusion equations induces numerical diffusivity acting only in the streamline direction, even though the equations are spatially discretized by the conventional Galerkin finite element method (GFEM). The transient 2‐D and 3‐D advection problems are solved with the PMC scheme using both the GFEM and the streamline upwind/Petrov Galerkin (SUPG) as the spatial discretization methods for comparison. The solutions of the SUPG‐PMC turned out to be overly diffusive due to the additional PMC streamline diffusion, while the solutions of the GFEM‐PMC were comparatively accurate without significant damping and phase error. A similar tendency was seen also in the quasi‐steady solutions to the incompressible viscous flow problems: 2‐D driven cavity flow and natural convection in a square cavity. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents a numerical algorithm using the pseudostress–velocity formulation to solve incompressible Newtonian flows. The pseudostress–velocity formulation is a variation of the stress–velocity formulation, which does not require symmetric tensor spaces in the finite element discretization. Hence its discretization is greatly simplified. The discrete system is further decoupled into an H ( div ) problem for the pseudostress and a post‐process resolving the velocity. This can be done conveniently by using the penalty method for steady‐state flows or by using the time discretization for nonsteady‐state flows. We apply this formulation to the 2D lid‐driven cavity problem and study its grid convergence rate. Also, computational results of the time‐dependent‐driven cavity problem and the flow past rectangular problem are reported. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The prediction of the flow field in a novel spiral casing has been accomplished. Hydraulic turbine manufacturers are considering the potential of using a special type of spiral casing because of the easier manufacturing process involved in its fabrication. These special spiral casings are known as plate‐spirals. Numerical simulation of complex three‐dimensional flow through such spiral casings has been accomplished using a finite element method (FEM). An explicit Eulerian velocity correction scheme has been deployed to solve the Reynolds‐average Navier–Stokes equations. The simulation has been performed to describe the flow in high Reynolds number (106) regimes. For spatial discretization, a streamline upwind Petrov–Galerkin (SUPG) technique has been used. The velocity field and the pressure distribution inside the spiral casing reveal meaningful results. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
A dual‐time implicit mesh‐less scheme is presented for calculation of compressible inviscid flow equations. The Taylor series least‐square method is used for approximation of spatial derivatives at each node which leads to a central difference discretization. Several convergence acceleration techniques such as local time stepping, enthalpy damping and residual smoothing are adopted in this approach. The capabilities of the method are demonstrated by flow computations around single and multi‐element airfoils at subsonic, transonic and supersonic flow conditions. Results are presented which indicate good agreements with other reliable finite‐volume results. The computational time is considerably reduced when using the proposed mesh‐less method compared with the explicit mesh‐less and finite‐volume schemes using the same point distributions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, we present spectral/hp penalty least‐squares finite element formulation for the numerical solution of unsteady incompressible Navier–Stokes equations. Pressure is eliminated from Navier–Stokes equations using penalty method, and finite element model is developed in terms of velocity, vorticity and dilatation. High‐order element expansions are used to construct discrete form. Unlike other penalty finite element formulations, equal‐order Gauss integration is used for both viscous and penalty terms of the coefficient matrix. For time integration, space–time decoupled schemes are implemented. Second‐order accuracy of the time integration scheme is established using the method of manufactured solution. Numerical results are presented for impulsively started lid‐driven cavity flow at Reynolds number of 5000 and transient flow over a backward‐facing step. The effect of penalty parameter on the accuracy is investigated thoroughly in this paper and results are presented for a range of penalty parameter. Present formulation produces very accurate results for even very low penalty parameters (10–50). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
A vertex‐centred finite‐volume/finite‐element method (FV/FEM) is developed for solving 2‐D shallow water equations (SWEs) with source terms written in a surface elevation splitting form, which balances the flux gradients and source terms. The method is implemented on unstructured grids and the numerical scheme is based on a second‐order MUSCL‐like upwind Godunov FV discretization for inviscid fluxes and a classical Galerkin FE discretization for the viscous gradients and source terms. The main advantages are: (1) the discretization of SWE written in surface elevation splitting form satisfies the exact conservation property (??‐Property) naturally; (2) the simple centred‐type discretization can be used for the source terms; (3) the method is suitable for both steady and unsteady shallow water problems; and (4) complex topography can be handled based on unstructured grids. The accuracy of the method was verified for both steady and unsteady problems, including discontinuous cases. The results indicate that the new method is accurate, simple, and robust. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Many planetary and astrophysical bodies are rotating rapidly, fluidic and, as a consequence of rapid rotation, in the shape of an ablate spheroid. We present an efficient element‐by‐element (EBE) finite element method for the numerical simulation of nonlinear flows in rotating incompressible fluids that are confined in an ablate spheroidal cavity with arbitrary eccentricity. Our focus is placed on temporal and spatial tetrahedral discretization of the EBE finite element method in spheroidal geometry, the EBE parallelization scheme and the validation of the nonlinear spheroidal code via both the constructed exact nonlinear solution and the special resonant forcing in the inviscid limit. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
This paper considers numerical simulation of time‐dependent non‐linear partial differential equation resulting from a single non‐linear conservation law in h, p, k mathematical and computational framework in which k=(k1, k2) are the orders of the approximation spaces in space and time yielding global differentiability of orders (k1?1) and (k2?1) in space and time (hence k‐version of finite element method) using space–time marching process. Time‐dependent viscous Burgers equation is used as a specific model problem that has physical mechanism for viscous dissipation and its theoretical solutions are analytic. The inviscid form, on the other hand, assumes zero viscosity and as a consequence its solutions are non‐analytic as well as non‐unique (Russ. Math. Surv. 1962; 17 (3):145–146; Russ. Math. Surv. 1960; 15 (6):53–111). In references (Russ. Math. Surv. 1962; 17 (3):145–146; Russ. Math. Surv. 1960; 15 (6):53–111) authors demonstrated that the solutions of inviscid Burgers equations can only be approached within a limiting process in which viscosity approaches zero. Many approaches based on artificial viscosity have been published to accomplish this including more recent work on H(Div) least‐squares approach (Commun. Pure Appl. Math. 1965; 18 :697–715) in which artificial viscosity is a function of spatial discretization, which diminishes with progressively refined discretizations. The thrust of the present work is to point out that: (1) viscous form of the Burgers equation already has the essential mechanism of viscosity (which is physical), (2) with progressively increasing Reynolds (Re) number (thereby progressively reduced viscosity) the solutions approach that of the inviscid form, (3) it is possible to compute numerical solutions for any Re number (finite) within hpk framework and space–time least‐squares processes, (4) the space–time residual functional converges monotonically and that it is possible to achieve the desired accuracy, (5) space–time, time marching processes utilizing a single space–time strip are computationally efficient. It is shown that viscous form of the Burgers equation without linearizing provides a physical and viablemechanism for approaching the solutions of inviscid form with progressively increasing Re. Numerical studies are presented and the computed solutions are compared with published work. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
A new finite element formulation designed for both compressible and nearly incompressible viscous flows is presented. The formulation combines conservative and non‐conservative dependent variables, namely, the mass–velocity (density * velocity), internal energy and pressure. The central feature of the method is the derivation of a discretized equation for pressure, where pressure contributions arising from the mass, momentum and energy balances are taken implicitly in the time discretization. The method is applied to the analysis of laminar flows governed by the Navier–Stokes equations in both compressible and nearly incompressible regimes. Numerical examples, covering a wide range of Mach number, demonstrate the robustness and versatility of the new method. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
The foundations of a new discontinuous Galerkin method for simulating compressible viscous flows with shocks on standard unstructured grids are presented in this paper. The new method is based on a discontinuous Galerkin formulation both for the advective and the diffusive contributions. High‐order accuracy is achieved by using a recently developed hierarchical spectral basis. This basis is formed by combining Jacobi polynomials of high‐order weights written in a new co‐ordinate system. It retains a tensor‐product property, and provides accurate numerical quadrature. The formulation is conservative, and monotonicity is enforced by appropriately lowering the basis order and performing h‐refinement around discontinuities. Convergence results are shown for analytical two‐ and three‐dimensional solutions of diffusion and Navier–Stokes equations that demonstrate exponential convergence of the new method, even for highly distorted elements. Flow simulations for subsonic, transonic and supersonic flows are also presented that demonstrate discretization flexibility using hp‐type refinement. Unlike other high‐order methods, the new method uses standard finite volume grids consisting of arbitrary triangulizations and tetrahedrizations. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
A least‐squares meshfree method based on the first‐order velocity–pressure–vorticity formulation for two‐dimensional incompressible Navier–Stokes problem is presented. The convective term is linearized by successive substitution or Newton's method. The discretization of all governing equations is implemented by the least‐squares method. Equal‐order moving least‐squares approximation is employed with Gauss quadrature in the background cells. The boundary conditions are enforced by the penalty method. The matrix‐free element‐by‐element Jacobi preconditioned conjugate method is applied to solve the discretized linear systems. Cavity flow for steady Navier–Stokes problem and the flow over a square obstacle for time‐dependent Navier–Stokes problem are investigated for the presented least‐squares meshfree method. The effects of inaccurate integration on the accuracy of the solution are investigated. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
A new interface capturing algorithm is proposed for the finite element simulation of two‐phase flows. It relies on the solution of an advection equation for the interface between the two phases by a streamline upwind Petrov–Galerkin (SUPG) scheme combined with an adaptive mesh refinement procedure and a filtering technique. This method is illustrated in the case of a Rayleigh–Taylor two‐phase flow problem governed by the Stokes equations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
The purpose of the present study is to establish a numerical model appropriate for solving inviscid/viscous free‐surface flows related to nonlinear water wave propagation. The viscous model presented herein is based on the Navier–Stokes equations, and the free‐surface is calculated through an arbitrary Lagrangian–Eulerian streamfunction‐vorticity formulation. The streamfunction field is governed by the Poisson equation, and the vorticity is obtained on the basis of the vorticity transport equation. For computing the inviscid flow the Laplace streamfunction equation is used. These equations together with the respective (appropriate) fully nonlinear free‐surface boundary conditions are solved using a finite difference method. To demonstrate the model feasibility, in the present study we first simulate collision processes of two solitary waves of different amplitudes, and compute the phenomenon of overtaking of such solitary waves. The developed model is subsequently applied to calculate (both inviscid and the viscous) flow field, as induced by passing of a solitary wave over submerged rectangular structures and rigid ripple beds. Our study provides a reasonably good understanding of the behavior of (inviscid/viscous) free‐surface flows, within the framework of streamfunction‐vorticity formulation. The successful simulation of the above‐mentioned test cases seems to suggest that the arbitrary Lagrangian–Eulerian/streamfunction‐vorticity formulation is a potentially powerful approach, capable of effectively solving the fully nonlinear inviscid/viscous free‐surface flow interactions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, the domain‐free discretization method (DFD) is extended to simulate the three‐dimensional compressible inviscid flows governed by Euler equations. The discretization strategy of DFD is that the discrete form of governing equations at an interior point may involve some points outside the solution domain. The functional values at the exterior‐dependent points are updated at each time step by extrapolation along the wall normal direction in conjunction with the wall boundary conditions and the simplified momentum equation in the vicinity of the wall. Spatial discretization is achieved with the help of the finite element Galerkin approximation. The concept of ‘osculating plane’ is adopted, with which the local DFD can be easily implemented for the three‐dimensional case. Geometry‐adaptive tetrahedral mesh is employed for three‐dimensional calculations. Finally, we validate the DFD method for three‐dimensional compressible inviscid flow simulations by computing transonic flows over the ONERA M6 wing. Comparison with the reference experimental data and numerical results on boundary‐conforming grid was displayed and the results show that the present DFD results compare very well with the reference data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号