首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The unstructured quadrilateral mesh‐based solution adaptive method is proposed in this article for simulation of compressible multi‐fluid flows with a general form of equation of state (EOS). The five equation model (J. Comput. Phys. 2002; 118 :577–616) is employed to describe the compressible multi‐fluid flows. To preserve the oscillation‐free property of velocity and pressure across the interface, the non‐conservative transport equation is discretized in a compatible way of the HLLC scheme for the conservative Euler equations on the unstructured quadrilateral cell‐based adaptive mesh. Five numerical examples, including an interface translation problem, a shock tube problem with two fluids, a solid impact problem, a two‐dimensional Riemann problem and a bubble explosion under free surface, are used to examine its performance in solving the various compressible multi‐fluid flow problems with either the same types of EOS or different types of EOS. The results are compared with those calculated by the following methods: the method with ROE scheme (J. Comput. Phys. 2002; 118 :577–616), the seven equation model (J. Comput. Phys. 1999; 150 :425–467), Shyue's fluid‐mixture model (J. Comput. Phys. 2001; 171 :678–707) or the method in Liu et al. (Comp. Fluids 2001; 30 :315–337). The comparisons for the test problems show that the proposed method seems to be more accurate than the method in Allaire et al. (J. Comput. Phys. 2002; 118 :577–616) or the seven‐equation model (J. Comput. Phys. 1999; 150 :425–467). They also show that it can adaptively and accurately solve these compressible multi‐fluid problems and preserve the oscillation‐free property of pressure and velocity across the material interface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
We present a γ‐model BGK scheme for the numerical simulation of compressible multifluids. The scheme is based on the incorporation of a conservative γ‐model scheme given in (J. Comput. Phys. 1996; 125 :150–160) into the gas kinetic BGK scheme (J. Comput. Phys. 1993; 109 :53–66, J. Comput. Phys. 1994; 114 :9–17), and is simple to implement. Several numerical examples presented in this paper validate the scheme in the application of compressible multimaterial flows. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
A numerical method for the simulation of compressible two‐phase flows is presented in this paper. The sharp‐interface approach consists of several components: a discontinuous Galerkin solver for compressible fluid flow, a level‐set tracking algorithm to follow the movement of the interface and a coupling of both by a ghost‐fluid approach with use of a local Riemann solver at the interface. There are several novel techniques used: the discontinuous Galerkin scheme allows locally a subcell resolution to enhance the interface resolution and an interior finite volume Total Variation Diminishing (TVD) approximation at the interface. The level‐set equation is solved by the same discontinuous Galerkin scheme. To obtain a very good approximation of the interface curvature, the accuracy of the level‐set field is improved and smoothed by an additional PNPM‐reconstruction. The capabilities of the method for the simulation of compressible two‐phase flow are demonstrated for a droplet at equilibrium, an oscillating ellipsoidal droplet, and a shock‐droplet interaction problem at Mach 3. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
The numerical simulation of physical phenomena represented by non‐linear hyperbolic systems of conservation laws presents specific difficulties mainly due to the presence of discontinuities in the solution. State of the art methods for the solution of such equations involve high resolution shock capturing schemes, which are able to produce sharp profiles at the discontinuities and high accuracy in smooth regions, together with some kind of grid adaption, which reduces the computational cost by using finer grids near the discontinuities and coarser grids in smooth regions. The combination of both techniques presents intrinsic numerical and programming difficulties. In this work we present a method obtained by the combination of a high‐order shock capturing scheme, built from Shu–Osher's conservative formulation (J. Comput. Phys. 1988; 77 :439–471; 1989; 83 :32–78), a fifth‐order weighted essentially non‐oscillatory (WENO) interpolatory technique (J. Comput. Phys. 1996; 126 :202–228) and Donat–Marquina's flux‐splitting method (J. Comput. Phys. 1996; 125 :42–58), with the adaptive mesh refinement (AMR) technique of Berger and collaborators (Adaptive mesh refinement for hyperbolic partial differential equations. Ph.D. Thesis, Computer Science Department, Stanford University, 1982; J. Comput. Phys. 1989; 82 :64–84; 1984; 53 :484–512). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
We propose a new model and a solution method for two‐phase two‐fluid compressible flows. The model involves six equations obtained from conservation principles applied to a one‐dimensional flow of gas and liquid mixture completed by additional closure governing equations. The model is valid for pure fluids as well as for fluid mixtures. The system of partial differential equations with source terms is hyperbolic and has conservative form. Hyperbolicity is obtained using the principles of extended thermodynamics. Features of the model include the existence of real eigenvalues and a complete set of independent eigenvectors. Its numerical solution poses several difficulties. The model possesses a large number of acoustic and convective waves and it is not easy to upwind all of these accurately and simply. In this paper we use relatively modern shock‐capturing methods of a centred‐type such as the total variation diminishing (TVD) slope limiter centre (SLIC) scheme which solve these problems in a simple way and with good accuracy. Several numerical test problems are displayed in order to highlight the efficiency of the study we propose. The scheme provides reliable results, is able to compute strong shock waves and deals with complex equations of state. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
This paper describes the implementation of a numerical solver that is capable of simulating compressible flows of nonideal single‐phase fluids. The proposed method can be applied to arbitrary equations of state and is suitable for all Mach numbers. The pressure‐based solver uses the operator‐splitting technique and is based on the PISO/SIMPLE algorithm: the density, velocity, and temperature fields are predicted by solving the linearized versions of the balance equations using the convective fluxes from the previous iteration or time step. The overall mass continuity is ensured by solving the pressure equation derived from the continuity equation, the momentum equation, and the equation of state. Nonphysical oscillations of the numerical solution near discontinuities are damped using the Kurganov‐Tadmor/Kurganov‐Noelle‐Petrova (KT/KNP) scheme for convective fluxes. The solver was validated using different test cases, where analytical and/or numerical solutions are present or can be derived: (1) A convergent‐divergent nozzle with three different operating conditions; (2) the Riemann problem for the Peng‐Robinson equation of state; (3) the Riemann problem for the covolume equation of state; (4) the development of a laminar velocity profile in a circular pipe (also known as Poiseuille flow); (5) a laminar flow over a circular cylinder; (6) a subsonic flow over a backward‐facing step at low Reynolds numbers; (7) a transonic flow over the RAE 2822 airfoil; and (8) a supersonic flow around a blunt cylinder‐flare model. The spatial approximation order of the scheme is second order. The mesh convergence of the numerical solution was achieved for all cases. The accuracy order for highly compressible flows with discontinuities is close to first order and, for incompressible viscous flows, it is close to second order. The proposed solver is named rhoPimpleCentralFoam and is implemented in the open‐source CFD library OpenFOAM®. For high speed flows, it shows a similar behavior as the KT/KNP schemes (implemented as rhoCentralFoam‐solver, Int. J. Numer. Meth. Fluids 2010), and for flows with small Mach numbers, it behaves like solvers that are based on the PISO/SIMPLE algorithm.  相似文献   

7.
A high‐resolution numerical scheme based on the MUSCL–Hancock approach is developed to solve unsteady compressible two‐phase dilute viscous flow. Numerical considerations for the development of the scheme are provided. Several solvers for the Godunov fluxes are tested and the results lead to the choice of an exact Riemann solver adapted for both gaseous and dispersed phases. The accuracy of the scheme is proven step by step through specific test cases. These simulations are for one‐phase viscous flows over a flat plate in subsonic and supersonic regimes, unsteady flows in a low‐pressure shock tube, two‐phase dilute viscous flows over a flat plate and, finally, two‐phase unsteady viscous flows in a shock tube. The results are compared with well‐established analytical and numerical solutions and very good agreement is achieved. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
Numerical solutions of 2D magneto‐hydrodynamic (MHD) equations by means of a fluctuation splitting (FS) scheme (with a new wave model and dual time stepping technique) is presented. The FS scheme, essentially based on the model explained in Proceedings of the Tenth International Conference, vol. 10, Swansea, 21–25 July 1997; Godunov Symposium, University of Michigan, Ann Arbor, 1–2 May 1997; Physics Symposium, Alanya, Turkey, 27–31 October 1998; J. Comput. Phys. 1999; 153 :437–466; Ph.D. Thesis, University of Marmara, Istanbul, Turkey, 2000), was extended to include gravitational source effects, limiters to limit oscillations, high order time accuracy through multistage Runge–Kutta steps, and a dual time stepping scheme to drive magnetic field divergence to zero during iterations. The numerical results show that with the new wave model called MHD‐B along with its embedded numerical dissipation, correct limiting viscosity solution has been recovered and that it can safely be used in order to investigate steady or time dependent magnetized or neutral compressible flows in two dimensions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
An interface‐capturing method based on mass fraction is developed to solve the Riemann problem in multi‐component compressible flow. Equations of mass fraction with modified form, which is derived from conservative equations of mass, are employed here to capture the interface. By introducing mass fraction into Euler equations system, as well as other conservative coefficients, a quasi‐conservative numerical model is created. Numerical examples show that the mass fraction model performs well not only in multi‐component fluids modeled by simple stiffened gas equation of state (EOS) but also in that modeled by complex Mie–Grüneisen EOS. Moreover, the mass fraction model is applied to Riemann problem with piecewise EOS; the expression of which depends on density. It is found that the mass fraction model can well adapt to the analytic change in piecewise EOS and produce accuracy solutions with fewer unknown quantities, and the model can be easily extended to m‐component fluid mixture by using only m + 4 equations with no additional conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
11.
This paper investigates the performance of preconditioned Krylov subspace methods used in a previously presented two‐fluid model developed for the simulation of separated and intermittent gas–liquid flows. The two‐fluid model has momentum and mass balances for each phase. The equations comprising this model are solved numerically by applying a two‐step semi‐implicit time integration procedure. A finite difference numerical scheme with a staggered mesh is used. Previously, the resulting linear algebraic equations were solved by a Gaussian band solver. In this study, these algebraic equations are also solved using the generalized minimum residual (GMRES) and the biconjugate gradient stabilized (Bi‐CGSTAB) Krylov subspace iterative methods preconditioned with incomplete LU factorization using the ILUT(p, τ) algorithm. The decrease in the computational time using the iterative solvers instead of the Gaussian band solver is shown to be considerable. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
The present work deals with the numerical investigation of a collapsing bubble in a liquid–gas fluid, which is modeled as a single compressible medium. The medium is characterized by the stiffened gas law using different material parameters for the two phases. For the discretization of the stiffened gas model, the approach of Saurel and Abgrall is employed where the flow equations, here the Euler equations, for the conserved quantities are approximated by a finite volume scheme, and an upwind discretization is used for the non‐conservative transport equations of the pressure law coefficients. The original first‐order discretization is extended to higher order applying second‐order ENO reconstruction to the primitive variables. The derivation of the non‐conservative upwind discretization for the phase indicator, here the gas fraction, is presented for arbitrary unstructured grids. The efficiency of the numerical scheme is significantly improved by employing local grid adaptation. For this purpose, multiscale‐based grid adaptation is used in combination with a multilevel time stepping strategy to avoid small time steps for coarse cells. The resulting numerical scheme is then applied to the numerical investigation of the 2‐D axisymmetric collapse of a gas bubble in a free flow field and near to a rigid wall. The numerical investigation predicts physical features such as bubble collapse, bubble splitting and the formation of a liquid jet that can be observed in experiments with laser‐induced cavitation bubbles. Opposite to the experiments, the computations reveal insight to the state inside the bubble clearly indicating that these features are caused by the acceleration of the gas due to shock wave focusing and reflection as well as wave interaction processes. While incompressible models have been used to provide useful predictions on the change of the bubble shape of a collapsing bubble near a solid boundary, we wish to study the effects of shock wave emissions into the ambient liquid on the bubble collapse, a phenomenon that may not be captured using an incompressible fluid model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents a study of the stationary phenomenon of superheated or metastable liquid jets, flashing into a two‐dimensional axisymmetric domain, while in the two‐phase region. In general, the phenomenon starts off when a high‐pressure, high‐temperature liquid jet emerges from a small nozzle or orifice expanding into a low‐pressure chamber, below its saturation pressure taken at the injection temperature. As the process evolves, crossing the saturation curve, one observes that the fluid remains in the liquid phase reaching a superheated condition. Then, the liquid undergoes an abrupt phase change by means of an oblique evaporation wave. Across this phase change the superheated liquid becomes a two‐phase high‐speed mixture in various directions, expanding to supersonic velocities. In order to reach the downstream pressure, the supersonic fluid continues to expand, crossing a complex bow shock wave. The balance equations that govern the phenomenon are mass conservation, momentum conservation, and energy conservation, plus an equation‐of‐state for the substance. A false‐transient model is implemented using the shock capturing scheme: dispersion‐controlled dissipative (DCD), which was used to calculate the flow conditions as the steady‐state condition is reached. Numerical results with computational code DCD‐2D v1 have been analyzed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The lattice Boltzmann method (LBM) has established itself as an alternative approach to solve the fluid flow equations. In this work we combine LBM with the conventional finite volume method (FVM), and propose a non‐iterative hybrid method for the simulation of compressible flows. LBM is used to calculate the inter‐cell face fluxes and FVM is used to calculate the node parameters. The hybrid method is benchmarked for several one‐dimensional and two‐dimensional test cases. The results obtained by the hybrid method show a steeper and more accurate shock profile as compared with the results obtained by the widely used Godunov scheme or by a representative flux vector splitting scheme. Additional features of the proposed scheme are that it can be implemented on a non‐uniform grid, study of multi‐fluid problems is possible, and it is easily extendable to multi‐dimensions. These features have been demonstrated in this work. The proposed method is therefore robust and can possibly be applied to a variety of compressible flow situations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
In the present paper, a numerical method for the computation of time‐harmonic flows, using the time‐linearized compressible Reynolds‐averaged Navier–Stokes equations is developed and validated. The method is based on the linearization of the discretized nonlinear equations. The convective fluxes are discretized using an O(Δx) MUSCL scheme with van Leer flux‐vector‐splitting. Unsteady perturbations of the turbulent stresses are linearized using a frozen‐turbulence‐Reynolds‐number hypothesis, to approximate eddy‐viscosity perturbations. The resulting linear system is solved using a pseudo‐time‐marching implicit ADI‐AF (alternating‐directions‐implicit approximate‐factorization) procedure with local pseudo‐time‐steps, corresponding to a matrix‐successive‐underrelaxation procedure. The stability issues associated with the pseudo‐time‐marching solution of the time‐linearized Navier–Stokes equations are discussed. Comparison of computations with measurements and with time‐nonlinear computations for 3‐D shock‐wave oscillation in a square duct, for various back‐pressure fluctuation frequencies (180, 80, 20 and 10 Hz), assesses the shock‐capturing capability of the time‐linearized scheme. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
On the basis of the work [P.‐H. Maire, R. Abgrall, J. Breil, J. Ovadia, SIAM J. Sci. Comput. 29 (2007), 1781–1824], we present an entropy fixed cell‐centered Lagrangian scheme for solving the Euler equations of compressible gas dynamics. The scheme uses the fully Lagrangian form of the gas dynamics equations, in which the primary variables are cell‐centered. And using the nodal solver, we obtain the nodal viscous‐velocity, viscous‐pressures, antidissipation velocity, and antidissipation pressures of each node. The final nodal velocity is computed as a weighted sum of viscous‐velocity and antidissipation velocity, so do nodal pressures, whereas these weights are calculated through the total entropy conservation for isentropic flows. Consequently, the constructed scheme is conservative in mass, momentum, and energy; preserves entropy for isentropic flows, and satisfies a local entropy inequality for nonisentropic flows. One‐ and two‐dimensional numerical examples are presented to demonstrate theoretical analysis and performance of the scheme in terms of accuracy and robustness.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
18.
An all‐speed algorithm based on the SIMPLE pressure‐correction scheme and the ‘retarded‐density’ approach has been formulated and implemented within an unstructured grid, finite volume (FV) scheme for both incompressible and compressible flows, the latter involving interaction of shock waves. The collocated storage arrangement for all variables is adopted, and the checkerboard oscillations are eliminated by using a pressure‐weighted interpolation method, similar to that of Rhie and Chow [Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA Journal 1983; 21 : 1525]. The solution accuracy is greatly enhanced when a higher‐order convection scheme combined with adaptive mesh refinement (AMR) are used. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
A mass‐conserving Level‐Set method to model bubbly flows is presented. The method can handle high density‐ratio flows with complex interface topologies, such as flows with simultaneous occurrence of bubbles and droplets. Aspects taken into account are: a sharp front (density changes abruptly), arbitrarily shaped interfaces, surface tension, buoyancy and coalescence of droplets/bubbles. Attention is paid to mass‐conservation and integrity of the interface. The proposed computational method is a Level‐Set method, where a Volume‐of‐Fluid function is used to conserve mass when the interface is advected. The aim of the method is to combine the advantages of the Level‐Set and Volume‐of‐Fluid methods without the disadvantages. The flow is computed with a pressure correction method with the Marker‐and‐Cell scheme. Interface conditions are satisfied by means of the continuous surface force methodology and the jump in the density field is maintained similar to the ghost fluid method for incompressible flows. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
A compressible, multiphase, one‐fluid Reynolds‐averaged Navier–Stokes solver has been developed to study turbulent cavitating flows. The interplay between turbulence and cavitation regarding the unsteadiness and structure of the flow is complex and not well understood. This constitutes a critical point to accurately simulate the dynamic behavior of sheet cavities. In the present study, different formulations based on a k ? ? transport‐equation model are investigated and a scale‐adaptive formulation is proposed. Numerical results are given for a Venturi geometry and comparisons are made with experimental data. The scale‐adaptive model shows several improvements compared with standard turbulence models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号