首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aluminum and zinc complexes of 4‐substituted 8‐hydroxyquinoline were used effectively as emissive materials in light‐emitting diodes (LED). The substituents chosen in this study were p‐methoxy‐2‐styryl, p‐diethylamino‐2‐styryl, and naphthalene‐2‐vinyl groups. Their emission spectra were red‐shifted with respect to that of aluminum tris(hydroxylquinolate) (Alq3) as a result of extending their π‐conjugation. All complexes formed amorphous glasses, which exhibited high thermal and electrical stability. Typical LED devices were fabricated by mixing the dyes with polyvinylcarbazole and spin‐coated to form thin films, which were sandwiched between ITO (indium tin oxide) and a metal electrode. These devices displayed yellow‐orange emissions with quantum efficiency ca. 0.4%.  相似文献   

2.
Four cationic cyclometalated IrIII complexes [(MeOPCz)2Ir(bpy)]PF6 ( 3 ), [(MeOPCz)2Ir(dtb-bpy)]PF6 ( 4 ), [(TFPCz)2Ir(bpy)]PF6 ( 5 ), and [(TFPCz)2Ir(dtb-bpy)]PF6 ( 6 ) were successfully synthesized using two new cyclometalated ligands 9-phenyl-3-(4-methoxypyridin-2-yl)-9H-carbazole (MeOPCz) 1 and 9-phenyl-3-(4-trifluoromethylpyridin-2-yl)-9H-carbazole (TFPCz) 2 in combination with 2,2'-bipyridine (bpy) and 4,4'-di-tert-butyl-2,2'-bipyridine (dtb-bpy) as ancillary ligands. These complexes adopt the distorted octahedral configuration, and the complexes 5 and 6 crystallize in the centrosymmetric space group C2/c. Emission wavelength of these complexes can be tuned from 583 nm to 628 nm by the substituents (methoxy, trifluoromethyl and tert-butyl groups) in ligands. All of these complexes show relatively high emission efficiencies (0.28–0.41) and short lifetimes (0.242–0.461 μs).  相似文献   

3.
A series of neutral Ir(III)‐based heteroleptic complexes with a formula of [Ir(η2‐(CN))22‐(SS))] ((CN) = ppy, (SS) = Et2NCS2 ( 2a ), MeOCS2 ( 2b ), EtOCS2 ( 2c ), iPrOCS2 ( 2d ); (CN) = tpy, (SS) = Et2NCS2 ( 3a ), MeOCS2 ( 3b ), EtOCS2 ( 3c ), iPrOCS2 ( 3d ); (CN) = epb , (SS) = Et2NCS2 ( 4a ), MeOCS2 ( 4a ), EtOCS2 ( 4a ); ppyH = 2‐phenylpyridine; tpyH = 2‐(4′‐tolyl)pyridine; epbH = ethyl 4‐(2′‐pyridyl)benzate) was synthesized and characterized. The crystal structure of complex 2d was also determined. The electron‐releasing substituents on (CN) or (SS) blueshift λmax values.  相似文献   

4.
Four iridium complexes containing furan moieties were synthesized and characterized. The positioning of the furan unit had a strong effect on the optical properties of the complexes. The synthetic methodologies developed pave the way for the introduction of oligofuran compounds in IrIII heteroleptic complexes for OLED applications.  相似文献   

5.
Imine complexes [IrCl(η5‐C5Me5){κ1‐NH=C(H)Ar}{P(OR)3}]BPh4 ( 1 , 2 ) (Ar = C6H5, 4‐CH3C6H4; R = Me, Et) were prepared by allowing chloro complexes [IrCl25‐C5Me5){P(OR)3}] to react with benzyl azides ArCH2N3. Bis(imine) complexes [Ir(η5‐C5Me5){κ1‐NH=C(H)Ar}2{P(OR)3}](BPh4)2 ( 3 , 4 ) were also prepared by reacting [IrCl25‐C5Me5){P(OR)3}] first with AgOTf and then with benzyl azide. Depending on the experimental conditions, treatment of the dinuclear complex [IrCl25‐C5Me5)]2 with benzyl azide yielded mono‐ [IrCl25‐C5Me5){κ1‐NH=C(H)Ar}] ( 5 ) and bis‐[IrCl(η5‐C5Me5){κ1‐NH=C(H)Ar}2]BPh4 ( 6 ) imine derivatives. In contrast, treatment of chloro complexes [IrCl25‐C5Me5){P(OR)3}] with phenyl azide C6H5N3 gave amine derivatives [IrCl(η5‐C5Me5)(C6H5NH2){P(OR)3}]BPh4 ( 7 , 8 ). The complexes were characterized spectroscopically (IR, NMR) and by X‐ray crystal structure determination of [IrCl(η5‐C5Me5){κ1‐NH=C(H)C6H4‐4‐CH3}{P(OEt)3}]BPh4 ( 2b ).  相似文献   

6.
Three new hetero‐bischelated rhodium (III) complexes of cis‐[Rh(PA)(L)Cl2]Cl (where PA = phenylpyridin‐2‐ylmethylene‐amine; L = 2,2′‐bipyridine, 2,2′‐dipyridylamine and 1,10‐phenanthroline) have been successfully prepared and characterized. Each complex shows high intensity bands in the UV region, and these are assigned to spin‐allowed π‐π* transitions. The medium‐intensity absorption band profile in the lower energy region can be explained by convolution of spin‐allowed CT and d‐d* transitions. The emission spectra at low temperature (77 K) of these complexes in EtOH/MeOH (4:1 v/v) are virtually identical. They all exhibit a broad, symmetric, and structureless red emission with a microsecond lifetime and hence are assigned as the d‐d* phosphorescence.  相似文献   

7.
Dinuclear Palladium(II), Platinum(II), and Iridium(III) Complexes of Bis[imidazol‐4‐yl]alkanes The reaction of bis(1,1′‐triphenylmethyl‐imidazol‐4‐yl) alkanes ((CH2)n bridged imidazoles L(CH2)nL, n = 3–6) with chloro bridged complexes [R3P(Cl)M(μ‐Cl)M(Cl)PR3] (M = Pd, Pt; R = Et, Pr, Bu) affords the dinuclear compounds [Cl2(R3P)M–L(CH2)nL–M(PR3)Cl2] 1 – 17 . The structures of [Cl2(Et3P)Pd–L(CH2)3L–Pd(PEt3)Cl2] ( 1 ), [Cl2(Bu3P)Pd–L(CH2)4L–Pd(PBu3)Cl2] ( 10 ), [Cl2(Et3P)Pd–L(CH2)5L–Pd(PEt3)Cl2] ( 3 ), [Cl2(Et3P)Pt–L(CH2)3L–Pt(PEt3)Cl2] ( 13 ) with trans Cl–M–Cl groups were determined by X‐ray diffraction. Similarly the complexes [Cl2(Cp*)Ir–L(CH2)nL–Ir(Cp*)Cl2] (n = 4–6) are obtained from [Cp*(Cl)Ir(μ‐Cl)2Ir(Cl)Cp*] and the methylene bridged bis(imidazoles).  相似文献   

8.
9.
Iridium(I) and Iridium(III) Complexes with Triisopropylarsane as Ligand The ethene complex trans‐[IrCl(C2H4)(AsiPr3)2] ( 2 ), which was prepared from [IrCl(C2H4)2]2 and AsiPr3, reacted with CO and Ph2CN2 by displacement of ethene to yield the substitution products trans‐[IrCl(L)(AsiPr3)2] ( 3 : L = CO; 4 : L = N2). UV irradiation of 2 in the presence of acetonitrile gave via intramolecular oxidative addition the hydrido(vinyl)iridium(III) compound [IrHCl(CH=CH2)(CH3CN)(AsiPr3)2] ( 5 ). The reaction of 2 with dihydrogen led under argon to the formation of the octahedral complex [IrH2Cl(C2H4)(AsiPr3)2] ( 7 ), whereas from 2 under 1 bar H2 the ethene‐free compound [IrH2Cl(AsiPr3)2] ( 6 ) was generated. Complex 6 reacted with ethene to afford 7 and with pyridine to give [IrH2Cl(py)(AsiPr3)2] ( 8 ). The mixed arsane(phosphane)iridium(I) compound [IrCl(C2H4)(PiPr3)(AsiPr3)] ( 11 ) was prepared either from the dinuclear complex [IrCl(C2H4)(PiPr3)]2 ( 9 ) and AsiPr3 or by ligand exchange from [IrCl(C2H4)(PiPr3)(SbiPr3)] ( 10 ) und triisopropylarsane. The molecular structure of 5 was determined by X‐ray crystallography.  相似文献   

10.
带烷氧基的苯基蒎烯吡啶铱配合物的合成及光物理性质   总被引:2,自引:0,他引:2  
合成了一组新型的带有烷氧基团的铱(Ⅲ)配合物[Ir(RO-pppy)3], 并进行了结构表征. 该组配合物在~496 nm处有较强的三重态发射, 磷光量子产率为0.4~0.6, 三重态寿命为2~4 μs. 结果表明, 连接了长链的配合物可减少分子间的聚集, 可以用作有机电致发光器件中的磷光材料.  相似文献   

11.
Interaction between ethylenediamine 8‐hydroxyquinolinato palladium(II) chloride and calf thymus DNA (CT‐DNA) in aqueous solution were studied by UV‐Visible absorption, fluorescence spectroscopic techniques and gel chromatography at temperatures of 300 K and 310 K. The complex bound strongly and intercalatively to the CT‐DNA. The results of the cytotoxicity assay of the Pd(II) complex on the leukemia cell line, K562 indicated lower cytotoxicity than cisplatin. The Pd(II) complex is considered an agent with potential antitumor activity. The calculation of several binding and thermodynamic parameters of the inclusion Pd(II) complex with CT‐DNA may provide deeper insights into the mechanism of action of these types of complexes with nucleic acids.  相似文献   

12.
The reaction of [{Ir(cod)(μ‐Cl)}2] and K2CO3 or of [{Ir(cod)(μ‐OMe)}2] alone with the non‐natural tetrapyrrole 2,2′‐bidipyrrin (H2BDP) yields, depending on the stoichiometry, the mononuclear complex [Ir(cod)(HBDP)] or the homodinuclear complex [{Ir(cod)}2(BDP)]. Both complexes react readily with carbon monoxide to yield the species [Ir(CO)2(HBDP)] and [{Ir(CO)2}2(BDP)], respectively. The results from NMR spectroscopy and X‐ray diffraction reveal different conformations for the tetrapyrrolic ligand in both complexes. The reaction of [{Ir(coe)2(μ‐Cl)}2] with H2BDP proceeds differently and yields the macrocyclic [4e?,2H+]‐oxidized product [IrCl2(9‐Meic)] (9‐Meic = monoanion of 9‐methyl‐9,10‐isocorrole), which can be addressed as an iridium analog of cobalamin.  相似文献   

13.
《中国化学会会志》2017,64(7):843-850
The organic salts 1‐(2‐pyridylmethyl)‐3‐alkylbenzimidazolium halide (pm‐RbH +X) and 1‐(2‐pyridylmethyl)‐3‐alkylimidazolium halide (pm‐R′iH +X′) were prepared (where R = 4‐, 3‐, 2‐fluorobenzyl ( 4f , 3f , and 2f , respectively), 4‐, 3‐, 2‐chlorobenzyl ( 4c , 3c , and 2c , respectively); 4‐methoxybenzyl (4mo); 2,3,4,5,6‐pentafluorobenzyl (f5); benzyl (b); and methyl (m)); X = Cl and Br; R′ = benzyl (b) and methyl (m); and X′ = Cl and I. From these salts, heteroleptic Ir(III ) complexes containing one N ‐heterocyclic carbene (NHC ) ligand [Ir(κ2‐ppy)22‐(pm‐Rb))]PF6 (R = 4f, 1 (PF6 ); 3f, 2 (PF6 ); 2f, 3 (PF6 ); f5b, 4 (PF6 ); 4c, 5 (PF6 ); 3c, 6 (PF6 ); 2c, 7 (PF6 ); 4mo, 8 (PF6 ); b, 9 (PF6 ); m, 10 (PF6 )) and [Ir(κ2‐ppy)22‐(pm‐R′i))]PF6 (R = b, 11 (PF6 ); m, 12 (PF6 )), were synthesized, and the crystal structures of 1 (PF6 ), 2 (PF6 ), 3 (PF6 ), 5 (PF6 ), 6 (PF6 ), 7 (PF6 ), 9 (PF6 ), 10 (PF6 ), and 12 (PF6 ) were determined by X‐ray diffraction. The neutral NHC ligands 1‐(2‐pyridylmethyl)‐3‐alkylbenzimidazolin‐2‐ylidene (pm‐Rb) and 1‐(2‐pyridylmethyl)‐3‐alkylimidazolin‐2‐ylidene (pm‐R′i) of all cations were found to be involved in the intermolecular π−π stacking interactions with the surrounding cations in the solid state, thereby probably influencing the photophysical behavior in the solid state and in solution. The absorption and emission properties of all the complexes show only small variations.  相似文献   

14.
Twelve iridium complexes with general formula of Ir(C^N)2(LX) [C^N represents the cyclometalated ligand, i.e. 2‐(2,4‐difluorophenyl) pyridine (dfppy), 2‐phenylpyridine (ppy), dibenzo{f, h}quinoxaline (DBQ); LX stands for β‐diketonate, i.e. acetyl acetonate (acac), 1‐(carbazol‐9‐yl)‐5,5‐dimethylhexane‐2,4‐diketonate (CBDK), 1‐(carbazol‐9‐yl)‐5,5,6,6,7,7,7‐heptafluoroheptane‐2,4‐diketonate (CHFDK), 1‐(N‐ethyl‐carbazol‐3‐yl)‐4,4,5,5,6,6,6‐heptafluorohexane‐1,3‐diketonate (ECHFDK)] are synthesized, characterized and their photophysical properties are systemically studied. In addition, crystals of Ir(DBQ)2(CHFDK) and Ir(DBQ)2(acac) are obtained and characterized by single crystal X‐ray diffraction. The choice of these iridium complexes provides an opportunity for tracing the effect of the triplet energy level of ancillary ligands on the photophysical and electrochemical behaviors. Data show that if the triplet energy level of the β‐diketonate is higher than that of the Ir(C^N)2 fragment and there is no superposition on the state density map, strong 3LC or 3MLCT‐based phosphorescence can be obtained. Alternatively, if the state density map of the two parts are in superposition, the 3LC or 3MLCT‐based transition will be quenched at room temperature. Density functional theory calculations show that these complexes can be divided into two categories. The lowest excited state is mainly determined by C^N but not β‐diketonate when the difference between the triplet energy levels of the two parts is large. However, when this difference is very small, the lowest excited state will be determined by both sides. This provides a satisfactory explanation for the experimental observations.  相似文献   

15.
An iridium(III) complex comprising three different cyclometalated phenylpyridine‐based ligands was designed and synthesized. Interestingly, mixed‐ligand complexes could be obtained by using a simple and straightforward procedure. A tris(heteroleptic) IrIII complex was obtained as a mixture of stereoisomers that could not be separated. Photophysical properties of the tris(heteroleptic) complex was investigated by UV/VIS absorption and luminescence spectroscopy, and compared with those of the parent homoleptic complexes. Modelling by time‐dependent density functional theory (TD‐DFT) was also performed to elucidate the nature and the location of the excited state, and to support the experimental results.  相似文献   

16.
17.
Phosphorescent probes often show sensitive response toward analytes at a specific wavelength. However, oxygen quenching usually occurs at the same wavelength and thus hinders the accurate detection of analytes. In this study, we have developed dual-emissive iridium(III) complexes that exhibit phosphorescence responses to copper(II) ions at a wavelength distinct from that where oxygen quenching occurs. The complexes displayed colorimetric phosphorescence response in aqueous solutions under different copper(II) and oxygen conditions. In cellular imaging, variation in oxygen concentration over a large range from 5 % to 80 % can modulate the intensity and lifetime of green phosphorescence without affecting the response of red phosphorescence toward intracellular copper(II) ions.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号