首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Porous anodic alumina membranes with Y-branched and double-branched nanopores were fabricated by the stepwise reduction of anodizing potential during the second step of anodization carried out in 0.3 M oxalic acid. The process of nanoporous layer formation and influence of anodizing parameters on structural features of as-obtained anodic aluminum oxide (AAO) membranes were discussed in detail. The pore rearrangement process occurring after the potential decrease was investigated on the basis of the current density vs. time curves, and results were correlated with the field-emission scanning electron microscope images of the pore bottoms taken after different anodizing durations. It was found that the reorganization of nanopores begins after 600 and 500 s from the time of the potential reduction to 42 and 30 V and the process seems to be completed after about 900 and 800 s, respectively. The through-hole AAO membranes were used as templates for the fabrication of gold and polystyrene nanowires via electrochemical deposition and simple immersing in the polymer solution, respectively. The arrays of hierarchically branched nanowires were synthesized, and the dimensions of nanowires were consistent with the shape and structure of used AAO templates.

  相似文献   

2.
Jiakun Zhuang  Long Ma  Yinghua Qiu 《Electrophoresis》2022,43(23-24):2428-2435
As an important property of porous membranes, the surface charge property determines many ionic behaviors of nanopores, such as ionic conductance and selectivity. Based on the dependence of electric double layers on bulk concentrations, ionic conductance through nanopores at high and low concentrations is governed by the bulk conductance and surface charge density, respectively. Here, through the investigation of ionic conductance inside track-etched single polyethylene terephthalate (PET) nanopores under various concentrations, the surface charge density of PET membranes is extracted as ∼−0.021 C/m2 at pH 10 over measurements with 40 PET nanopores. Simulations show that surface roughness can cause underestimation in surface charge density due to the inhibited electroosmotic flow. Then, the averaged pore size and porosity of track-etched multipore PET membranes are characterized by the developed ionic conductance method. Through coupled theoretical predictions in ionic conductance under high and low concentrations, the averaged pore size and porosity of porous membranes can be obtained simultaneously. Our method provides a simple and precise way to characterize the pore size and porosity of multipore membranes, especially for those with sub-100 nm pores and low porosities.  相似文献   

3.
《Electrophoresis》2018,39(4):626-634
Solid‐state nanopores are nanoscale channels through otherwise impermeable membranes. Single molecules or particles can be passed through electrolyte‐filled nanopores by, e.g. electrophoresis, and then detected through the resulting physical displacement of ions within the nanopore. Nanopore size, shape, and surface chemistry must be carefully controlled, and on extremely challenging <10 nm‐length scales. We previously developed a framework to characterize nanopores from the time‐dependent changes in their conductance as they are being formed through solution‐phase nanofabrication processes with the appeal of ease and accessibility. We revisited this simulation work, confirmed the suitability of the basic conductance equation using the results of time‐dependent experimental conductance measurements during nanopore fabrication by Yanagi et al., and then deliberately relaxed the model constraints to allow for (i) the presence of defects; and (ii) the formation of two small pores instead of one larger one. Our simulations demonstrated that the time‐dependent conductance formalism supports the detection and characterization of defects, as well as the determination of pore number, but with implementation performance depending on the measurement context and results. In some cases, the ability to discriminate numerically between the correct and incorrect nanopore profiles was slight, but with accompanying differences in candidate nanopore dimensions that could yield to post‐fabrication conductance profiling, or be used as convenient uncertainty bounds. Time‐dependent nanopore conductance thus offers insight into nanopore structure and function, even in the presence of fabrication defects.  相似文献   

4.
Brillouin light scattering was used to probe acoustic waves propagating with both longitudinal and transverse polarizations in the surface and the bulk of self‐supported particle track‐etched polycarbonate membranes with 15‐ and 80‐nm nanopores. The recorded scattering line shape at gigahertz frequencies reveals changes in the surface waves of the membranes which are more pronounced for the 80‐nm nanopores despite the low porosity (0.7 and 0.05%). Because the measured elastic constants (1.2 and 6.2 GPa) were found to compare very well with the values for thick polycarbonate film, modifications of the elasto‐optical coefficients and/or the transparency might be the reason for the different scattering line shapes. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3311–3317, 2004  相似文献   

5.
The self‐assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to bridge the gap from ultra‐ to nanofiltration and decrease the pore size of self‐assembled block copolymer membranes to below 5 nm without post‐treatment. It is now reported that the self‐assembly of blends of two chemically interacting copolymers can lead to highly porous membranes with pore diameters as small as 1.5 nm. The membrane containing an ultraporous, 60 nm thin separation layer can fully reject solutes with molecular weights of 600 g mol?1 in aqueous solutions with a water flux that is more than one order of magnitude higher than the permeance of commercial nanofiltration membranes. Simulations of the membrane formation process by dissipative particle dynamics (DPD) were used to explain the dramatic observed pore size reduction combined with an increase in water flux.  相似文献   

6.
The combination of nonsolvent‐induced phase separation and the self‐assembly of block copolymers can lead to asymmetric membranes with a thin highly ordered isoporous skin layer. The effective pore size of such membranes is usually larger than 15 nm. We reduced the pore size of these membranes by electroless gold deposition. We demonstrate that the pore sizes can be controlled precisely between 3 and 20 nm leading to a tunable sharp size discrimination in filtration processes. Besides fractionation of nanoparticles and biomaterials, controlled drug delivery is an attractive potential application.  相似文献   

7.
In this work, we address the capability of glow discharge optical emission spectroscopy (GDOES) for fast and accurate depth profiling of multilayer nitride coatings down to the nanometer range. This is shown by resolving the particular case of CrN/AlN structures with individual thickness ranging from hundreds to few nanometers. In order to discriminate and identify artefacts in the GDOES depth profile due to the sputtering process, the layered structures were verified by Rutherford backscattering spectrometry (RBS) and scanning electron microscopy (SEM). The interfaces in the GDOES profiles for CrN/AlN structures are sharper than the ones measured for similar metal multilayers due to the lower sputtering rate of the nitrides. However, as a consequence of the crater shape, there is a linear degradation of the depth resolution with depth (approximately 40 nm/μm), saturating at a value of approximately half the thickness of the thinner layer. This limit is imposed by the simultaneous sputtering of consecutive layers. The ultimate GDOES depth resolution at the near surface region was estimated to be of 4–6 nm.  相似文献   

8.
We have fabricated novel nanofibrous fluorinated polyimide membranes on a specially designed collector, which is composed of conductive aluminum plates and glass insulator materials and can be removed from the apparatus, using an electrospinning method. We describe the structure and water flux properties of the nanofibrous fluorinated polyimide membranes. The electrospun nanofibers were deposited across the plates and uniaxially aligned to the collector. In addition, the multi‐layer stacked nanofibrous membranes, consisting of three‐dimensionally ordered nanopores, were produced. The pure water fluxes for the stacked membranes were measured, using a stirred dead‐end filtration cell, and were linearly decreased with an increasing deposition time, indicating that the nanopores formed in the nanofibrous membrane were further narrowed due to the regularly accumulated nanofibers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
A study on the layer structure of W/C multilayers deposited by magnetron sputtering is reported. In the study, soft x‐ray resonant reflectivity and hard x‐ray grazing incidence reflectivity of the W/C multilayers were measured. The imperfections at the interface such as interdiffusion and formation of compounds were dealt with by two methods. On analyzing the experimental results, we found that the incorporation of an interlayer was a more suitable method than the traditional statistical method to describe the layer structure of a W/C system we fabricated. The optical constants of each layer at a wavelength of 4.48 nm were also obtained from the analysis. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Wang C  Wang L  Zhu X  Wang Y  Xue J 《Lab on a chip》2012,12(9):1710-1716
Track-etched polymer membranes are used to realize low-voltage electroosmotic (EO) pumps. The nanopores in polycarbonate (PC) and polyethylene terephthalate (PET) membranes were fabricated by the track-etching technique, the pore diameter was controlled in the range of 100 to 250 nm by adjusting the etching time. The results show that these EO pumps can provide high flow rates at low applied voltages (2-5 V). The maximum normalized flow rate is as high as 0.12 ml min(-1) V(-1) cm(-2), which is comparable to the best values of previously demonstrated EO pumps. We attribute this high performance to the unique properties of the track-etched nanopores in the membranes.  相似文献   

11.
Ni matrix composite coatings reinforced with nano‐ and microceramic particles were analyzed by radio frequency glow discharge optical emission spectrometry (Rf‐GDOES). An interesting phenomenon related to the sputtering and excitation modes of this technique was observed. During plasma sputtering with Rf‐GDOES, the micro‐SiC particles were detached from metal matrix and did not contribute to the analytical signals. The same was not found in composite coatings containing nanoceramic particles. This anomalous behavior was confirmed by atomic force microscopy (AFM) investigation and scanning electron microscope (SEM) observations into Rf‐GDOES craters that showed the presence of residual non‐sputtered microparticles. Various attempts were done in order to minimize this problem, mainly by varying the analysis parameters of the used instrumentation, but without any relevant success. Some suggestions were then proposed for explaining the observed phenomenon, moreover possible solutions (e.g. by using a strong magnetic field or changing plasma gas to be more energetic) are discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Electrodeposition of nanoparticles (NPs) is a promising route for the preparation of highly electroactive nanostructured electrodes. By taking advantage of progressive electrodeposition, disordered arrays with a wide size distribution of Ag NPs are produced. Combined with surface‐reaction monitoring by using highly sensitive backside absorbing‐layer optical microscopy (BALM), such arrays offer a platform for screening size‐dependent electrochemistry at the single NP level. In particular, this strategy allows rationalizing the electrodeposition dynamics at the single‐NP level (>10 nm), up to the point of quantifying the presence of metal nanoclusters (<2 nm), and probing easier NP oxidation with size decrease, either through electrochemical or galvanic reactions.  相似文献   

13.
Summary: Organic‐inorganic hybrid materials consisting of nanosized silica particles with surface grafted PS or PS‐b‐PMMA were synthesized using ATRP. These hybrid materials were used in the fabrication of highly‐ordered isoporous membranes. Optical characterization revealed that the membranes consisted of hexagonally ordered pores of uniform size. The combination of an open pore structure and high surface area makes isoporous membranes into materials of high interest in fields as biotechnology and photonics.

Image from optical microscope of hybrid nanoparticle membrane of SiO2g‐PS with hexagonally‐ordered pores.  相似文献   


14.
The development of new nonlinear optical (NLO) materials for deep‐ultraviolet (DUV) applications is in great demand. However, the synthesis of an ideal DUV NLO crystal is a serious challenge. Herein, three new alkali‐metal fluorooxoborates, AB4O6F (A=K, Rb, and Cs, and a mixed cation between two of them), were successfully synthesized by cation regulation. It is found that all reported compounds exhibit short UV absorption edges (<190 nm), and show second harmonic generation (SHG) responses ranging from 0.8 to 1.9 KH2PO4 (KDP). Interestingly, by judicious selection of the A‐site alkali‐metal cations, the arrangement of NLO‐active structural units is fine‐tuned to an optimal configuration, which contributes to large SHG responses.  相似文献   

15.
Alkali treatment of the Ti‐6Al‐7Nb alloys with subsequent heat treatment has been adopted as an important surface treatment procedure for apatite formation in dental implants. This study examined the effects of alkali treatment on the precipitation of apatite on a Ti‐6Al‐7Nb alloy. All samples were immersed in a Hanks' Balanced Salts Solution [simulated body fluid (SBF)] at pH 7.4 and 36.5 °C for 15 days. The surface structural changes of samples due to the alkali treatment and immersing in SBF were analyzed by XRD, SEM and XPS. The cell toxicity was evaluated based on the optical density of the surviving cells. The samples were implanted into the abdominal connective tissue of mice for 4 weeks. A sodium titanate hydrogel layer was formed after immersion in an NaOH solution. A dense and uniform bone‐like apatite layer precipitated on the alkali and heat‐treated Ti‐6Al‐7Nb alloy in the SBF. There was a significant difference in cell toxicity between the treated and untreated Ti‐6Al‐7Nb (P < 0.05). The thickness of the fibrous capsule formed around the implant body was decreased significantly by the alkali and heat treatment (P < 0.05). The alkali treatment samples showed a better biocompatibility than the commercial metal samples. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
One of the most commonly employed detection methods in microfluidic research is fluorescence detection, due to its ease of integration and excellent sensitivity. Many analytes though do not show luminescence when excited in the visible light spectrum, require suitable dyes. Deep‐ultraviolet (UV) excitation (<300 nm) allows label‐free detection of a broader range of analytes but also mandates the use of expensive fused silica glass, which is transparent to UV light. Herein, we report the first application of label‐free deep UV fluorescence detection in non‐UV transparent full‐body polymer microfluidic devices. This was achieved by means of two‐photon excitation in the visible range (λex = 532 nm). Issues associated with the low optical transmittance of plastics in the UV range were successfully circumvented in this way. The technique was investigated by application to microchip electrophoresis of small aromatic compounds. Various polymers, such as poly(methyl methacrylate), cyclic olefin polymer, and copolymer as well as poly(dimethylsiloxane) were investigated and compared with respect to achievable LOD and ruggedness against photodamage. To demonstrate the applicability of the technique, the method was also applied to the determination of serotonin and tryptamine in fruit samples.  相似文献   

17.
We have investigated the effect of the surface state and surface treatment of the pores of an inorganic substrate on the plasma‐grafting behavior of pore‐filling‐type organic/inorganic composite membranes. Shirasu porous glass (SPG) was used as the inorganic substrate, and methyl acrylate was used as the grafting monomer. The grafting rate increased as the density of silanol on the SPG substrate increased. This result suggests that radicals are generated mainly at the silanol groups on the pore surface by plasma irradiation. The SPG substrates were treated with silane coupling agents used to control the mass of organic material bonded to the pore surface. The thickness of the grafted layer became thinner as the mass of organic material bonded to the pore surface of SPG increased. This decrease in the thickness of the grafted layer could be explained by the decrease in the penetration depth of vacuum ultraviolet rays contained in plasma having a wavelength of less than 160 nm that generated radicals in the pores of the substrate. The thickness of the grafted layer inside the SPG substrates could be controlled through the control of the mass of organic material bonded to the pore surface of the SPG substrate. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 846–856, 2006  相似文献   

18.
An application of the “pore filling” concept yielded high‐performance composite membranes for the selective pervaporation (PV) separation of aromatic/non‐aromatic hydrocarbon mixtures. Asymmetric polyacrylonitrile (PAN) membranes (average pore size of about 12 nm) were used as support for polymeric PV separation phases which were prepared in situ by heterogeneous photo‐initiated graft copolymerization. The impact of chain length of methyl polyoxyethylene (meth)acrylates and preparation parameters (UV irradiation time and degree of grafting) were analysed using PV with toluene/heptane (20/80 wt‐ratio; 80°C) as model feed. High selectivity and high permeate fluxes were achieved. Major reasons for the excellent performance were the small effective PV barrier thickness (< 5μm) and the covalent anchoring of the coated polymer.  相似文献   

19.
PVDF/(PEI‐C/PAA)n functional membranes were prepared by layer‐by‐layer (LbL) assembly, and their heavy metal ions adsorption capability was investigated. The changes in the chemical compositions of membrane surfaces were determined by X‐ray photoelectron spectroscopy (XPS). XPS results show that the surface of the PVDF membrane can be alternatively functionalized by PEI‐C and PAA. The membrane surface hydrophilicity was evaluated through water contact angle measurement. Contact angle results show that the surface hydrophilicity of the membrane surface depends on the outermost deposited layer. Morphological changes of membrane surfaces were observed by scanning electron microscopy (SEM). The water fluxes for these membranes were elevated after modification. The performances of the PVDF/(PEI‐C/PAA)n membranes on the adsorption of copper ions (Cu2+) from aqueous solutions were investigated by inductively coupled plasma (ICP). The results indicate that the PVDF/(PEI‐C/PAA)n functional membranes show high copper ions adsorption ability. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Hyper‐cross‐linked resins stemming from a gel‐type poly‐chloromethylated poly(styrene‐co‐divinylbenzene) resin (GT) have been investigated by a multi‐methodological approach based on elemental analysis, scanning electron microscopy, X‐ray microanalysis, and solvent absorption. The hyper‐cross‐linking of the parent resin was accomplished by Friedel–Crafts alkylation of the phenyl rings of the resins with the chloromethyl groups. This produced a permanent pore system comprising both micropores (<2.0 nm in diameter) and mesopores (2.2 nm). The chloromethyl groups that did not react in the hyper‐cross‐linking step were transformed into methylmercaptan groups and the latter were then converted into sulfonic groups by oxidation with hydrogen peroxide. By this procedure the extensive permanent porosity of the parent unsulfonated hyper‐cross‐linked polymer (HGT) was retained by the sulfonated polymer (HGTS). The final exchange capacity of HGTS was determined to be 0.36 mmol g?1. HGTS was easily metalated with PdII and the subsequent reduction of the metal centers with either aqueous sodium borohydride, formaldehyde, or dihydrogen produced three Pd0/HGTS nanocomposites. The metal nanoparticles had diameters in the 1–6 nm range for all the nanocomposites, as determined by TEM, but with somewhat different distributions. When formaldehyde was used, more than 90 % of the nanoparticles were less than 3 nm and their radial distribution throughout the polymer beads was quite homogeneous. These findings show that with this reducing agent the metal nanoparticles are generated within the pore system of the polymer matrix, hence their size is controlled by the dimensions of the pores of the polymeric support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号