首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For a graph G, let p(G) denote the order of a longest path in G and c(G) the order of a longest cycle in G, respectively. We show that if G is a 3‐connected graph of order n such that for every independent set {x1, x2, x3, x4}, then G satisfies c(G)p(G) ? 1. Using this result, we give several lower bounds to the circumference of a 3‐connected graph. © 2001 John Wiley & Sons, Inc. J Graph Theory 37: 137–156, 2001  相似文献   

2.
A biclique of a graph G is a maximal induced complete bipartite subgraph of G. Given a graph G, the biclique matrix of G is a {0,1,?1} matrix having one row for each biclique and one column for each vertex of G, and such that a pair of 1, ?1 entries in a same row corresponds exactly to adjacent vertices in the corresponding biclique. We describe a characterization of biclique matrices, in similar terms as those employed in Gilmore's characterization of clique matrices. On the other hand, the biclique graph of a graph is the intersection graph of the bicliques of G. Using the concept of biclique matrices, we describe a Krausz‐type characterization of biclique graphs. Finally, we show that every induced P3 of a biclique graph must be included in a diamond or in a 3‐fan and we also characterize biclique graphs of bipartite graphs. © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 1–16, 2010  相似文献   

3.
An mcovering of a graph G is a spanning subgraph of G with maximum degree at most m. In this paper, we shall show that every 3‐connected graph on a surface with Euler genus k ≥ 2 with sufficiently large representativity has a 2‐connected 7‐covering with at most 6k ? 12 vertices of degree 7. We also construct, for every surface F2 with Euler genus k ≥ 2, a 3‐connected graph G on F2 with arbitrarily large representativity each of whose 2‐connected 7‐coverings contains at least 6k ? 12 vertices of degree 7. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 26–36, 2003  相似文献   

4.
In this article, we apply a cutting theorem of Thomassen to show that there is a function f: N → N such that if G is a 3‐connected graph on n vertices which can be embedded in the orientable surface of genus g with face‐width at least f(g), then G contains a cycle of length at least cn, where c is a constant not dependent on g. © 2002 Wiley Periodicals, Inc. J Graph Theory 41: 69–84, 2002  相似文献   

5.
It is shown that every sufficiently large almost‐5‐connected non‐planar graph contains a minor isomorphic to an arbitrarily large graph from one of six families of graphs. The graphs in these families are also almost‐5‐connected, by which we mean that they are 4‐connected and all 4‐separations contain a “small” side. As a corollary, every sufficiently large almost‐5‐connected non‐planar graph contains both a K3, 4‐minor and a ‐minor. The connectivity condition cannot be reduced to 4‐connectivity, as there are known infinite families of 4‐connected non‐planar graphs that do not contain a K3, 4‐minor. Similarly, there are known infinite families of 4‐connected non‐planar graphs that do not contain a ‐minor.  相似文献   

6.
A graph G is 3‐domination critical if its domination number γ is 3 and the addition of any edge decreases γ by 1. Let G be a 3‐connected 3‐domination critical graph of order n. In this paper, we show that there is a path of length at least n?2 between any two distinct vertices in G and the lower bound is sharp. © 2002 John Wiley & Sons, Inc. J Graph Theory 39: 76–85, 2002  相似文献   

7.
For a graph G, we denote by dG(x) and κ(G) the degree of a vertex x in G and the connectivity of G, respectively. In this article, we show that if G is a 3‐connected graph of order n such that dG(x) + dG(y) + dG(z) ≥ d for every independent set {x, y, z}, then G contains a cycle of length at least min{d ? κ(G), n}. © 2006 Wiley Periodicals, Inc. J Graph Theory 54: 277–283, 2007  相似文献   

8.
Let G be a 2‐connected graph, let u and v be distinct vertices in V(G), and let X be a set of at most four vertices lying on a common (u, v)‐path in G. If deg(x) ≥ d for all xV(G) \ {u, v}, then there is a (u, v)‐path P in G with XV(P) and |E(P)| ≥ d. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 55–65, 2000  相似文献   

9.
Tutte proved that every 3‐connected graph G on more than 4 vertices contains a contractible edge. We strengthen this result by showing that every depth‐first‐search tree of G contains a contractible edge. Moreover, we show that every spanning tree of G contains a contractible edge if G is 3‐regular or if G does not contain two disjoint pairs of adjacent degree‐3 vertices.  相似文献   

10.
It is well‐known that every planar graph has a vertex of degree at most five. Kotzig proved that every 3‐connected planar graph has an edge xy such that deg(x) + deg (y) ≤ 13. In this article, considering a similar problem for the case of three or more vertices that induce a connected subgraph, we show that, for a given positive integer t, every 3‐connected planar graph G with |V(G)| ≥ t has a connected subgraph H of order t such that ΣxV(H) degG(x) ≤ 8t − 1. As a tool for proving this result, we consider decompositions of 3‐connected planar graphs into connected subgraphs of order at least t and at most 2t − 1. © 1999 John Wiley & Sons, Inc. J Graph Theory 30: 191–203, 1999  相似文献   

11.
For a graph G, p(G) and c(G) denote the order of a longest path and a longest cycle of G, respectively. In this paper, we prove that if G is a 3 ‐connected graph of order n such that the minimum degree sum of four independent vertices is at least n+ 6, then p(G)?c(G)?2. By considering our result and the results in [J Graph Theory 20 (1995), 213–225; Amer Math Monthly 67 (1950), 55], we propose a conjecture which is a generalization of Bondy's conjecture. Furthermore, using our result, for a graph satisfying the above conditions, we obtain a new lower bound of the circumference and establish Thomassen's conjecture. © 2009 Wiley Periodicals, Inc. J Graph Theory 62, 279–291, 2009  相似文献   

12.
Let cl(G) denote Ryjá?ek's closure of a claw‐free graph G. In this article, we prove the following result. Let G be a 4‐connected claw‐free graph. Assume that G[NG(T)] is cyclically 3‐connected if T is a maximal K3 in G which is also maximal in cl(G). Then G is hamiltonian. This result is a common generalization of Kaiser et al.'s theorem [J Graph Theory 48(4) (2005), 267–276] and Pfender's theorem [J Graph Theory 49(4) (2005), 262–272]. © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

13.
Let G be a graph. For each vertex vV(G), Nv denotes the subgraph induces by the vertices adjacent to v in G. The graph G is locally k‐edge‐connected if for each vertex vV(G), Nv is k‐edge‐connected. In this paper we study the existence of nowhere‐zero 3‐flows in locally k‐edge‐connected graphs. In particular, we show that every 2‐edge‐connected, locally 3‐edge‐connected graph admits a nowhere‐zero 3‐flow. This result is best possible in the sense that there exists an infinite family of 2‐edge‐connected, locally 2‐edge‐connected graphs each of which does not have a 3‐NZF. © 2003 Wiley Periodicals, Inc. J Graph Theory 42: 211–219, 2003  相似文献   

14.
In the set of graphs of order n and chromatic number k the following partial order relation is defined. One says that a graph G is less than a graph H if ci(G) ≤ ci(H) holds for every i, kin and at least one inequality is strict, where ci(G) denotes the number of i‐color partitions of G. In this paper the first ? n/2 ? levels of the diagram of the partially ordered set of connected 3‐chromatic graphs of order n are described. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 210–222, 2003  相似文献   

15.
A graph G is N2locally connected if for every vertex ν in G, the edges not incident with ν but having at least one end adjacent to ν in G induce a connected graph. In 1990, Ryjá?ek conjectured that every 3‐connected N2‐locally connected claw‐free graph is Hamiltonian. This conjecture is proved in this note. © 2004 Wiley Periodicals, Inc. J Graph Theory 48: 142–146, 2005  相似文献   

16.
A well‐known result of Tutte states that a 3‐connected graph G is planar if and only if every edge of G is contained in exactly two induced non‐separating circuits. Bixby and Cunningham generalized Tutte's result to binary matroids. We generalize both of these results and give new characterizations of both 3‐connected planar graphs and 3‐connected graphic matroids. Our main result determines when a natural necessary condition for a binary matroid to be graphic is also sufficient. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 165–174, 2010  相似文献   

17.
《Journal of Graph Theory》2018,87(3):374-393
In this article, we consider the following problem proposed by Locke and Zhang in 1991: Let G be a k‐connected graph with minimum degree d and X a set of m vertices on a cycle of G. For which values of m and k, with , must G have a cycle of length at least passing through X? Fujisawa and Yamashita solved this problem for the case and in 2008. We provide an affirmative answer to this problem for the case of and .  相似文献   

18.
An in‐tournament is an oriented graph such that the negative neighborhood of every vertex induces a tournament. Let m = 4 or m = 5 and let D be a strongly connected in‐tournament of order such that each arc belongs to a directed path of order at least m. In 2000, Volkmann showed that if D contains an arc e such that the longest directed path through e consists of exactly m vertices, then e is the only arc of D with that property. In this article we shall see that this proposition is true for , thereby validating a conjecture of Volkmann. Furthermore, we prove that if we ease the restrictions on the order of D to , the in‐tournament D in question has at most two such arcs. In doing so, we also give a characterization of the in‐tournaments with exactly two such arcs. © 2008 Wiley Periodicals, Inc. J Graph Theory 60: 130–148, 2009  相似文献   

19.
Let G=(V, E) be a graph where every vertex vV is assigned a list of available colors L(v). We say that G is list colorable for a given list assignment if we can color every vertex using its list such that adjacent vertices get different colors. If L(v)={1, …, k} for all vV then a corresponding list coloring is nothing other than an ordinary k‐coloring of G. Assume that W?V is a subset of V such that G[W] is bipartite and each component of G[W] is precolored with two colors taken from a set of four. The minimum distance between the components of G[W] is denoted by d(W). We will show that if G is K4‐minor‐free and d(W)≥7, then such a precoloring of W can be extended to a 4‐coloring of all of V. This result clarifies a question posed in 10. Moreover, we will show that such a precoloring is extendable to a list coloring of G for outerplanar graphs, provided that |L(v)|=4 for all vV\W and d(W)≥7. In both cases the bound for d(W) is best possible. © 2009 Wiley Periodicals, Inc. J Graph Theory 60: 284‐294, 2009  相似文献   

20.
Let G be a graph. For u,vV(G) with distG(u,v)=2, denote JG(u,v)={wNG(u)∩NG(v)|NG(w)NG(u)NG(v){u,v}}. A graph G is called quasi claw-free if JG(u,v)≠ for any u,vV(G) with distG(u,v)=2. In 1986, Thomassen conjectured that every 4-connected line graph is hamiltonian. In this paper we show that every 4-connected line graph of a quasi claw-free graph is hamiltonian connected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号