首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ab initio calculations are used to provide information on H3N???XY???HF triads (X, Y=F, Cl, Br) each having a halogen bond and a hydrogen bond. The investigated triads include H3N???Br2‐HF, H3N???Cl2???HF, H3N???BrCI???HF, H3N???BrF???HF, and H3N???ClF???HF. To understand the properties of the systems better, the corresponding dyads are also investigated. Molecular geometries, binding energies, and infrared spectra of monomers, dyads, and triads are studied at the MP2 level of theory with the 6‐311++G(d,p) basis set. Because the primary aim of this study is to examine cooperative effects, particular attention is given to parameters such as cooperative energies, many‐body interaction energies, and cooperativity factors. The cooperative energy ranges from ?1.45 to ?4.64 kcal mol?1, the three‐body interaction energy from ?2.17 to ?6.71 kcal mol?1, and the cooperativity factor from 1.27 to 4.35. These results indicate significant cooperativity between the halogen and hydrogen bonds in these complexes. This cooperativity is much greater than that between hydrogen bonds. The effect of a halogen bond on a hydrogen bond is more pronounced than that of a hydrogen bond on a halogen bond.  相似文献   

2.
The ternary systems of C2H4 (C2H2 or C6H6)‐MCN‐HF (M=Cu, Ag, Au) and the respective binary systems were investigated to study the interplay between metal???π interactions and hydrogen bonds. The metal???π interactions in C2H4‐MCN become stronger with the irregular order Ag<Cu<Au, while the hydrogen bonds in MCN‐HF become weaker following the same order. The metal???π interactions are weakened as the H atoms in the π system are replaced with electron‐withdrawing groups and enhanced by electron‐donating groups. Type 1 of these ternary systems, in which MCN acts as Lewis base and acid simultaneously, is more stable than type 2, in which C2H4 acts as a double Lewis base. Negative cooperativity is present in type 2 ternary systems with a weakening of the metal???π interactions and the hydrogen bonds. Positive cooperativity is found in type 1 ternary systems with an enhancement of the metal???π interactions and the hydrogen bonds, except for C2(CN)4‐AuCN‐HF‐1. The weaker metal???π interaction in C6H6‐AuCN has a greater enhancing effect on the hydrogen bond in AuCN‐HF than those in C2H4‐AuCN and C2H2‐AuCN. These synergetic effects were analyzed with the natural bond orbital and energy decomposition.  相似文献   

3.
The influences of the Li???π interaction of C6H6???LiOH on the H???π interaction of C6H6???HOX (X=F, Cl, Br, I) and the X???π interaction of C6H6???XOH (X=Cl, Br, I) are investigated by means of full electronic second‐order Møller–Plesset perturbation theory calculations and “quantum theory of atoms in molecules” (QTAIM) studies. The binding energies, binding distances, infrared vibrational frequencies, and electron densities at the bond critical points (BCPs) of the hydrogen bonds and halogen bonds prove that the addition of the Li???π interaction to benzene weakens the H???π and X???π interactions. The influences of the Li???π interaction on H???π interactions are greater than those on X???π interactions; the influences of the H???π interactions on the Li???π interaction are greater than X???π interactions on Li???π interaction. The greater the influence of Li???π interaction on H/X???π interactions, the greater the influences of H/X???π interactions on Li???π interaction. QTAIM studies show that the intermolecular interactions of C6H6???HOX and C6H6???XOH are mainly of the π type. The electron densities at the BCPs of hydrogen bonds and halogen bonds decrease on going from bimolecular complexes to termolecular complexes, and the π‐electron densities at the BCPs show the same pattern. Natural bond orbital analyses show that the Li???π interaction reduces electron transfer from C6H6 to HOX and XOH.  相似文献   

4.
MP2 and DFT calculations with correlation consistent basis sets indicate that isolated linear anionic dialkylgold(I) complexes form moderately strong (ca. 10 kcal mol?1) Au???H hydrogen bonds with single H2O molecules as donors in the absence of sterically demanding substituents. Relativistic effects are critically important in the attraction. Such bonds are significantly weaker in neutral, strong σ‐donor N‐heterocyclic carbene (NHC) complexes (ca. 5 kcal mol?1). The overall association (>11 kcal mol?1), however, is strengthened by co‐operative, synergistic classical hydrogen bonding when the NHC ligands bear NH units. Further manipulation of the interaction by ligands positioned trans to the carbene, is possible.  相似文献   

5.
MP2/6‐311++G(d,p) calculations were performed on the NH4+ ??? (HCN)n and NH4+ ??? (N2)n clusters (n=1–8), and interactions within them were analyzed. It was found that for molecules of N2 and HCN, the N centers play the role of the Lewis bases, whereas the ammonium cation acts as the Lewis acid, as it is characterized by sites of positive electrostatic potential, that is, H atoms and the sites located at the N atom in the extension of the H?N bonds. Hence, the coordination number for the ammonium cation is eight, and two types of interactions of this cation with the Lewis base centers are possible: N?H ??? N hydrogen bonds and H?N ??? N interactions that are classified as σ‐hole bonds. Redistribution of the electronic charge resulting from complexation of the ammonium cation was analyzed. On the one hand, the interactions are similar, as they lead to electronic charge transfer from the Lewis base (HCN or N2 in this study) to NH4+. On the other hand, the hydrogen bond results in the accumulation of electronic charge on the N atom of the NH4+ ion, whereas the σ‐hole bond results in the depletion of the electronic charge on this atom. Quantum theory of “atoms in molecules” and the natural bond orbital method were applied to deepen the understanding of the nature of the interactions analyzed. Density functional theory/natural energy decomposition analysis was used to analyze the interactions of the ammonium ion with various types of Lewis bases. Different correlations between the geometrical, energetic, and topological parameters were found and discussed.  相似文献   

6.
MP2/aug‐cc‐pVTZ calculations were performed on complexes of boron and aluminum trihydrides and trihalides with hydrogen cyanide (ZH3‐NCH and ZX3‐NCH; Z=B, Al; X=F, Cl). The complexes are linked through the B???N and Al???N interactions, which are named as triel bonds and which are classified as π‐hole bonds. It was found that they possess numerous characteristics of typical covalent bonds, since they are ruled mainly by processes of the electron charge shift from the Lewis base to the Lewis acid unit. Other configurations of the ZH3‐NCH and ZX3‐NCH complexes linked by the dihydrogen, hydrogen, and halogen bonds were found. However, these interactions are much weaker than the corresponding π‐hole bonds. The quantum theory of atoms in molecules and the natural bond orbital approaches were applied to characterize the complexes and interactions analyzed. The crystal structures of triel trihydrides and triel trihalides were also analyzed for comparison with the results of calculations.  相似文献   

7.
A hydrogen bond of the type C?H???X (X=O or N) is known to influence the structure and function of chemical and biological systems in solution. C?H???O hydrogen bonding in solution has been extensively studied, both experimentally and computationally, whereas the equivalent thermodynamic parameters have not been enumerated experimentally for C?H???N hydrogen bonds. This is, in part, due to the lack of systems that exhibit persistent C?H???N hydrogen bonds in solution. Herein, a class of molecule based on a biologically active norharman motif that exhibits unsupported intermolecular C?H???N hydrogen bonds in solution has been described. A pairwise interaction leads to dimerisation to give bond strengths of about 7 kJ mol?1 per hydrogen bond, which is similar to chemically and biologically relevant C?H???O hydrogen bonding. The experimental data is supported by computational work, which provides additional insight into the hydrogen bonding by consideration of electrostatic and orbital interactions and allowed a comparison between calculated and extrapolated NMR chemical shifts.  相似文献   

8.
Hydrogenase enzymes in nature use hydrogen as a fuel, but the heterolytic cleavage of H? H bonds cannot be readily observed in enzymes. Here we show that an iron complex with pendant amines in the diphosphine ligand cleaves hydrogen heterolytically. The product has a strong Fe‐H???H‐N dihydrogen bond. The structure was determined by single‐crystal neutron diffraction, and has a remarkably short H???H distance of 1.489(10) Å between the protic N‐Hδ+ and hydridic Fe‐Hδ? part. The structural data for [CpFe H (PtBu2NtBu2 H )]+ provide a glimpse of how the H? H bond is oxidized or generated in hydrogenase enzymes. These results now provide a full picture for the first time, illustrating structures and reactivity of the dihydrogen complex and the product of the heterolytic cleavage of H2 in a functional model of the active site of the [FeFe] hydrogenase enzyme.  相似文献   

9.
The pairing of ions of opposite charge is a fundamental principle in chemistry, and is widely applied in synthesis and catalysis. In contrast, cation–cation association remains an elusive concept, lacking in supporting experimental evidence. While studying the structure and properties of 4‐oxopiperidinium salts [OC5H8NH2]X for a series of anions X? of decreasing basicity, we observed a gradual self‐association of the cations, concluding in the formation of an isolated dicationic pair. In 4‐oxopiperidinium bis(trifluoromethylsulfonyl)amide, the cations are linked by N? H???O?C hydrogen bonds to form chains, flanked by hydrogen bonds to the anions. In the tetra(perfluoro‐tert‐butoxy)aluminate salt, the anions are fully separated from the cations, and the cations associate pairwise by N? C? H???O?C hydrogen bonds. The compounds represent the first genuine examples of self‐association of simple organic cations based merely on hydrogen bonding as evidenced by X‐ray structure analysis, and provide a paradigm for an extension of this class of compounds.  相似文献   

10.
The effect of monohydration in equatorial/axial isomerism of the common motif of tropane alkaloids is investigated in a supersonic expansion by using Fourier‐transform microwave spectroscopy. The rotational spectrum reveals the equatorial isomer as the dominant species in the tropinone???H2O complex. The monohydrated complex is stabilized primarily by a moderate O?H???N hydrogen bond. In addition, two C?H???O weak hydrogen bonds also support this structure, blocking the water molecule and avoiding any molecular dynamics in the complex. The water molecule acts as proton donor and chooses the ternary amine group over the carbonyl group as a proton acceptor. The experimental work is supported by theoretical calculations; the accuracy of the B3LYP, M06‐2X, and MP2 methods is also discussed.  相似文献   

11.
The halogen bonding of furan???XY and thiophene???XY (X=Cl, Br; Y=F, Cl, Br), involving σ‐ and π‐type interactions, was studied by using MP2 calculations and quantum theory of “atoms in molecules” (QTAIM) studies. The negative electrostatic potentials of furan and thiophene, as well as the most positive electrostatic potential (VS,max) on the surface of the interacting X atom determined the geometries of the complexes. Linear relationships were found between interaction energy and VS,max of the X atom, indicating that electrostatic interactions play an important role in these halogen‐bonding interactions. The halogen‐bonding interactions in furan???XY and thiophene???XY are weak, “closed‐shell” noncovalent interactions. The linear relationship of topological properties, energy properties, and the integration of interatomic surfaces versus VS,max of atom X demonstrate the importance of the positive σ hole, as reflected by the computed VS,max of atom X, in determining the topological properties of the halogen bonds.  相似文献   

12.
The reaction of the N‐thiophosphorylated thiourea (HOCH2)(Me)2CNHC(S)NHP(S)(OiPr)2 (HL), deprotonated by the thiophosphorylamide group, with NiCl2 leads to green needles of the pseudotetrahedral complex [Ni(L‐1,5‐S,S′)2] ? 0.5 (n‐C6H14) or pale green blocks of the trans square‐planar complex trans‐[Ni(L‐1,5‐S,S′)2]. The former complex is stabilized by homopolar dihydrogen C?H???H?C interactions formed by n‐hexane solvent molecules with the [Ni(L‐1,5‐S,S′)2] unit. Furthermore, the dispersion‐dominated C?H??? H?C interactions are, together with other noncovalent interactions (C?H???N, C?H???Ni, C?H???S), responsible for pseudotetrahedral coordination around the NiII center in [Ni(L ‐1,5‐S,S′)2] ? 0.5 (n‐C6H14).  相似文献   

13.
Ab initio calculations were performed on complexes of ZH4+ (Z=N, P, As) and their fluoro derivatives, ZFH3+ and ZF4+, with a HCN (or LiCN) molecule acting as the Lewis base through the nitrogen electronegative center. It was found that the complexes are linked by the Z? H???N hydrogen bond or another type of noncovalent interaction in which the tetravalent heavy atom of the cation acts as the Lewis acid center, that is, when the Z???N link exists, which may be classified as the σ‐hole bond. The formation of the latter interaction is usually preferable to the formation of the corresponding hydrogen bond. The Z???N interaction may be also considered as the preliminary stage of the SN2 reaction. This is supported by the observation that for a short Z???N contact, the corresponding complex geometry coincides with the trigonal‐bipyramidal geometry typical for the transition state of the SN2 reaction. The Z???N interaction for some of complexes analyzed here possesses characteristics typical for covalent bonds. Numerous interrelations between geometrical, topological and energetic parameters are discussed. The natural bond orbital method as well as the Quantum Theory of “Atoms in Molecules” is applied to characterize interactions in the analyzed complexes. The experimental evidences of the existence of these interactions, based on the Cambridge Structure Database search, are also presented. In addition, it is justified that mechanisms of the formation of the Z???N interactions are similar to the processes occurring for the other noncovalent links. The formation of Z???N interaction as well as of other interactions may be explained with the use of the σ‐hole concept.  相似文献   

14.
The C?H???Y (Y=hydrogen‐bond acceptor) interactions are somewhat unconventional in the context of hydrogen‐bonding interactions. Typical C?H stretching frequency shifts in the hydrogen‐bond donor C?H group are not only small, that is, of the order of a few tens of cm?1, but also bidirectional, that is, they can be red or blue shifted depending on the hydrogen‐bond acceptor. In this work we examine the C?H???N interaction in complexes of 7‐azaindole with CHCl3 and CHF3 that are prepared in the gas phase through supersonic jet expansion using the fluorescence depletion by infra‐red (FDIR) method. Although the hydrogen‐bond acceptor, 7‐azaindole, has multiple sites of interaction, it is found that the C?H???N hydrogen‐bonding interaction prevails over the others. The electronic excitation spectra suggest that both complexes are more stabilized in the S1 state than in the S0 state. The C?H stretching frequency is found to be red shifted by 82 cm?1 in the CHCl3 complex, which is the largest redshift reported so far in gas‐phase investigations of 1:1 haloform complexes with various substrates. In the CHF3 complex the observed C?H frequency is blue shifted by 4 cm?1. This is at variance with the frequency shifts that are predicted using several computational methods; these predict at best a redshift of 8.5 cm?1. This discrepancy is analogous to that reported for the pyridine‐CHF3 complex [W. A. Herrebout, S. M. Melikova, S. N. Delanoye, K. S. Rutkowski, D. N. Shchepkin, B. J. van der Veken, J. Phys. Chem. A­ 2005 , 109, 3038], in which the blueshift is termed a pseudo blueshift and is shown to be due to the shifting of levels caused by Fermi resonance between the overtones of the C?H bending and stretching modes. The dissociation energies, (D0), of the CHCl3 and CHF3 complexes are computed (MP2/aug‐cc‐pVDZ level) as 6.46 and 5.06 kcal mol?1, respectively.  相似文献   

15.
16.
In the last years, chalcogen bonding, the noncovalent interaction involving chalcogen centers, has emerged as interesting alternative to the ubiquitous hydrogen bonding in many research areas. Here, we could show by means of high‐level quantum chemical calculations that the carbonyl???tellurazole chalcogen bond is at least as strong as conventional hydrogen bonds. Using the carbonyl???tellurazole binding motif, we were able to design complex supramolecular networks in solid phase starting from tellurazole‐substituted cyclic peptides. X‐ray analyses reveal that the rigid structure of the cyclic peptides is caused by hydrogen bonds, whereas the supramolecular network is held together by chalcogen bonding. The type of the supramolecular network depends on peptide used; both linear wires and a honeycomb‐like supramolecular organic framework (SOF) were observed. The unique structure of the SOF shows two channels filled with different types of solvent mixtures that are either locked or freely movable.  相似文献   

17.
Non‐covalent interactions involving multicenter multielectron skeletons such as boron clusters are rare. Now, a non‐covalent interaction, the nido‐cage???π bond, is discovered based on the boron cluster C2B9H12? and an aromatic π system. The X‐ray diffraction studies indicate that the nido‐cage???π bonding presents parallel‐displaced or T‐shaped geometries. The contacting distance between cage and π ring varies with the type and the substituent of the aromatic ring. Theoretical calculations reveal that this nido‐cage???π bond shares a similar nature to the conventional anion???π or π???π bonds found in classical aromatic ring systems. This nido‐cage???π interaction induces variable photophysical properties such as aggregation‐induced emission and aggregation‐caused quenching in one molecule. This work offers an overall understanding towards the boron cluster‐based non‐covalent bond and opens a door to investigate its properties.  相似文献   

18.
DFT calculations for methyl cation complexed within a constrained cage of water molecules permit the controlled manipulation of the “axial” donor/acceptor distance and the “equatorial” distance to hydrogen‐bond acceptors. The kinetic isotope effect k(CH3)/k(CT3) for methyl transfer within a cage with a short axial distance becomes less inverse for shorter equatorial C???O distances: a decrease of 0.5 Å results in a 3 % increase at 298 K. Kinetic isotope effects in AdoMet‐dependent methyltransferases may be m∧odulated by CH???O hydrogen bonding, and factors other than axial compression may contribute, at least partially, to recently reported isotope‐effect variations for catechol‐O‐methyltransferase and its mutant structures.  相似文献   

19.
Ab initio MP2/aug′‐cc‐pVTZ calculations are used to investigate the binary complexes H2XP:HF, the ternary complexes H2XP:(FH)2, and the quaternary complexes H2XP:(FH)3, for X=CH3, OH, H, CCH, F, Cl, NC, and CN. Hydrogen‐bonded (HB) binary complexes are formed between all H2XP molecules and FH, but only H2FP, H2ClP, and H2(NC)P form pnicogen‐bonded (ZB) complexes with FH. Ternary complexes with (FH)2 are stabilized by F?H???P and F?H???F hydrogen bonds and F???P pnicogen bonds, except for H2(CH3)P:(FH)2 and H3P:(FH)2, which do not have pnicogen bonds. All quaternary complexes H2XP:(FH)3 are stabilized by both F?H???P and F?H???F hydrogen bonds and P???F pnicogen bonds. Thus, (FH)2 with two exceptions, and (FH)3 can bridge the σ‐hole and the lone pair at P in these complexes. The binding energies of H2XP:(FH)3 complexes are significantly greater than the binding energies of H2XP:(FH)2 complexes, and nonadditivities are synergistic in both series. Charge transfer occurs across all intermolecular bonds from the lone‐pair donor atom to an antibonding σ* orbital of the acceptor molecule, and stabilizes these complexes. Charge‐transfer energies across the pnicogen bond correlate with the intermolecular P?F distance, while charge‐transfer energies across F?H???P and F?H???F hydrogen bonds correlate with the distance between the lone‐pair donor atom and the hydrogen‐bonded H atom. In binary and quaternary complexes, charge transfer energies also correlate with the distance between the electron‐donor atom and the hydrogen‐bonded F atom. EOM‐CCSD spin‐spin coupling constants 2hJ(F–P) across F?H???P hydrogen bonds, and 1pJ(P–F) across pnicogen bonds in binary, ternary, and quaternary complexes exhibit strong correlations with the corresponding intermolecular distances. Hydrogen bonds are better transmitters of F–P coupling data than pnicogen bonds, despite the longer F???P distances in F?H???P hydrogen bonds compared to P???F pnicogen bonds. There is a correlation between the two bond coupling constants 2hJ(F–F) in the quaternary complexes and the corresponding intermolecular distances, but not in the ternary complexes, a reflection of the distorted geometries of the bridging dimers in ternary complexes.  相似文献   

20.
The core N?H units of planar porphyrins are often inaccessible to forming hydrogen‐bonding complexes with acceptor molecules. This is due to the fact that the amine moieties are “shielded” by the macrocyclic system, impeding the formation of intermolecular H‐bonds. However, methods exist to modulate the tetrapyrrole conformations and to reshape the vector of N?H orientation outwards, thus increasing their availability and reactivity. Strategies include the use of porpho(di)methenes and phlorins (calixphyrins), as well as saddle‐distorted porphyrins. The former form cavities due to interruption of the aromatic system. The latter are highly basic systems and capable of binding anions and neutral molecules via N?H???X‐type H‐bonds. This Review discusses the role of porphyrin(oid) ligands in various coordination‐type complexes, means to access the core for hydrogen bonding, the concept of conformational control, and emerging applications, such as organocatalysis and sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号