首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the effects of inner diameters on the Z‐pinch plasma of capillary discharge soft x‐ray laser were investigated with the 3.2 mm and 4.0 mm inner diameter alumina capillaries. The intensities of the laser emitted from the 3.2 mm and 4.0 mm inner diameter alumina capillaries were measured under different initial pressures. To understand the underlying physics of the experimental measurements, the Z‐pinch plasma simulations had been conducted with a one‐dimensional cylindrical symmetry Lagrangian magneto‐hydrodynamics (MHD) code. The parametric studies of Z‐pinch plasma, such as the electron temperature, the electron density and the Ne‐like Ar ion density, were performed with the MHD code. With the experimental and the simulated results, the discussions had been conducted on the Z‐pinch plasma of Ne‐like Ar 46.9 nm laser with the 3.2 mm and 4.0 mm inner diameter alumina capillaries. The analysis had been made on the difference of the gain coefficients under the optimum pressures with both capillaries. Then, the effects of inner diameters on the optimum pressure and the pressure domain were analyzed. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
We report a measurement of the electron temperature in a plasma generated by a high-intensity laser focused into a jet of neon. The 15?eV electron temperature is determined using an analytic solution of the plasma equations assuming local thermodynamic equilibrium, initially developed for ultracold neutral plasmas. We show that this analysis method accurately reproduces more sophisticated plasma simulations in our temperature and density range. While our plasma temperatures are far outside the typical "ultracold" regime, the ion temperature is determined by the plasma density through disorder-induced heating just as in ultracold neutral plasma experiments. Based on our results, we outline a pathway for achieving a strongly coupled neutral laser-produced plasma that even more closely resembles ultracold neutral plasma conditions.  相似文献   

3.
The paper aims to clarify the modelling results concerning the heat transfer and fluid flow in a radio‐frequency plasma torch with argon at atmospheric pressure. Fluid numerical simulation requires the coupling of magnetohydrodynamics (MHD) and thermal phenomena. This model combines Navier–Stokes equations with the Maxwell's equations for compressible fluid and electromagnetic phenomena successively. A numerical formulation based on the finite element method is used. In this study, fluid flow and temperature equations are simultaneously solved (direct method, instead of using the indirect method) using a finite elements method (FEM) for optically thin argon plasmas under the assumptions of local thermodynamic equilibrium (LTE) and laminar flow. Appropriate boundary conditions are given, and nonlinear parameters such as the thermal and electrical conductivity of the gas and input power used in the simulation are detailed. We have found that the source of power is located on the torch wall in this type of inductive discharge. The center can be heated by conduction and convection via electromagnetic phenomena (power loss and Lorentz force). (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
5.
Xenon is a common element employed, for example, as impurity in magnetically confined plasmas or the medium in which radiative shocks propagate in laboratory astrophysics. In both situations, it is required the knowledge of plasma parameters such as the average ionization, the charge state distribution, the atomic level populations and the radiative properties. In most cases, the plasmas are under non‐local thermodynamic equilibrium (NLTE) conditions and these quantities should be determined by means of the so‐called collisionalradiative models. For a high Z element like xenon this is a complex task and entails a high computational cost since it is necessary to solve a very large set of rate equations. In this work are characterized the thermodynamic regimes of xenon plasmas as a function of the matter density and temperature. This fact will allow us to establish in which regions of density and temperature the assumption of local thermodynamic equilibrium (LTE) is accurate and also in which regions it can be retained to estimate some plasma parameters but not others. Moreover, it is also provided information about the average ionization in a wide range of plasma conditions which covers both LTE and NLTE regimes which is valuable information in order to optimize subsequent calculations. Finally, it is also performed an analysis of the differences of NLTE and LTE simulations on several relevant plasma parameters. With this purpose, a comparison is made between the results of the calculation using detailed NLTE modeling with simulations that use the same energy level structure, but atomic populations that are forced into LTE (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
We present a method to estimate the temperature of transient plasmas and their degree of departure from local thermodynamic equilibrium conditions. Our method is based on application of the Saha–Boltzmann equations on the temporal variation of the intensity of the spectral lines of the plasma, under the assumption that the plasmas at the different times when the spectra were obtained are in local thermodynamic equilibrium. The method requires no knowledge of the spectral efficiency of the spectrometer/detector, transition probabilities of the considered lines, or degeneracies of the upper and lower levels. Provided that the conditions of optically thin, homogeneous plasma in local thermodynamic equilibrium are satisfied, the accuracy of the procedure is limited only by the precision with which the line intensities and densities can be determined at two different temperatures. The procedure generates an equation describing the temporal evolution of the electron number density of transient plasmas under local thermodynamic equilibrium conditions. The method is applied to the analysis of two laser-induced breakdown spectra of cadmium at different temperatures.  相似文献   

7.
Mass and energy spatial flows within high-pressure lighting plasmas containing metal halides may affect the plasma state of equilibrium. In this study, the effect of the thermochemical equilibrium assumptions on the determination of the plasma parameters in a sodium-iodide arc lamp is experimentally investigated. The electron temperature and electron, mercury-ion, and sodium-ion density as a function of the radial distance from the arc axis in a sodium-iodide arc lamp are determined using an emission spectroscopy technique, which is free of equilibrium assumptions. Comparison of the results with those assuming thermochemical equilibrium shows that the actual plasma state differs from that at equilibrium. Possible factors causing the observed differences are discussed.  相似文献   

8.
获得覆盖较宽温度和压力范围内的等离子体热力学和输运性质是开展等离子体传热和流动过程数值模拟的必要条件.本文通过联立Saha方程、道尔顿分压定律以及电荷准中性条件求解等离子体组分;采用理想气体动力学理论计算等离子体热力学性质;基于Chapman-Enskog方法求解等离子体输运性质.利用上述方法计算了压力为0.1, 1.0和10.0 atm (1 atm=101325 Pa),电子温度在300—30000 K范围内,非局域热力学平衡(电子温度不等于重粒子温度)条件下氩-氮等离子体的热力学和输运性质.结果表明压力和非平衡度会影响等离子体中各化学反应过程,从而对氩-氮等离子体的热力学及输运性质有较大的影响.在局域热力学平衡条件下,计算获得的氩-氮等离子体输运性质和文献报道的数据符合良好.  相似文献   

9.
Radiative emission of fast electrons in collision with an “ion‐sphere” electron distribution in dense plasmas is under consideration. The electron structure of the ion sphere is calculated ab initio using self‐consistent solution of both bound and free electron distribution inside the sphere. Two radiation channels are included: emission of the colliding electron itself in static potential (conventional or static Bremsstrahlung) and the emission of “ion sphere” medium due to its polarization by the colliding electron (polarization Bremsstrahlung). The last one is calculated in the frame of local plasma density approximation. Interference between conventional and polarization Bremsstrahlung is taken into account. It is shown that spectral cross section of the process has characteristic features depending on plasma density and ionization stage of plasma ions. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
11.
Steady state full noninductive current tore supra plasmas offer a unique opportunity to study the local parametric dependence of particle pinch velocity, in order to discriminate among different theories. Magnetic field shear is found to generate an inward pinch which is dominant in the gradient region (normalized radius 0.3相似文献   

12.
Scattering of ultrashort electromagnetic pulses on the dense strongly coupled plasma is under consideration in the frame of hard ion sphere model. The electron distribution inside the ion sphere is obtained from self‐consistent solution of the Shrodinger equation for bound electrons and the Poisson equation for free electrons. The electron density distribution is determined by plasma electron temperatures. The ion density of Al plasmas under consideration is of the order of 1020–1022 cm?3, the electron temperature changes between 54 and 816 eV. Dynamical polarizability of the hard sphere determining the scattering cross sections is calculated using the modified local plasma frequency approximation. The spectrum of scattering cross section has maxima in the vicinity of the mean plasma frequency. Dependencies of scattering probability on carrier frequency and pulse duration are analysed in detail. The transition of the total scattering probabilities from nonlinear time dependence at small times to standard linear ones with the increase of pulse duration is demonstrated.  相似文献   

13.
A stable, globally convergent method for computing the equilibrium electron density of a partially ionized plasma is presented. Since the Newton-Raphson method is used, the convergence is quadratic. In addition, global convergence is guaranteed in local thermodynamic equilibrium. The applicability of the method to non-LTE plasmas is discussed.  相似文献   

14.
Hydrogen plasmas out of ionization equilibrium are either ionizing or recombining depending on the electron temperature Te . Within the transition region between these two opposite states a minimum of the Hα emission is often experimentally observed. Simple cases were previously analyzed which could be interpreted assuming only a temperature variation, i.e the electron density was constant in the transition region. Here we discuss two examples in which both the density and the temperature vary at the transition. In the linear plasma generator PSI‐II a hydrogen plasma is cooled down by puffing additional gas. We find a minimum at Tmin ≈ 1.1 eV. A second example is the effect of an ELM(edge localized mode) pulse propagating through a recombining divertor plasma in the tokamak ASDEX Upgrade. The Hα response shows a double peak which can be interpreted as a local minimum assuming a simultaneous rise of density and temperature during an ELM. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
In order to explain the detailed features of radiation spectra obtained from dense argon plasmas, an ionization-radiation model for argon has been constructed which calculates time-integrated spectra as a function of plasma temperature, density and size. The model describes a plasma in collisional-radiative equilibrium (CRE) by solving the time-dependent atomic rate equations for ground state and selected excited state populations of argon coupled with a probability-of-escape radiation transport scheme for both bound-bound and bound-free photons. Results are presented which illustrate basic changes in the X-ray spectra of an argon plasma as density is increased, in particular, relative intensities of resonance, satellite and intercombination lines as well as the free-bound continuum. In addition, temperature and density profiles from 1-D MHD calculations characterizing the peak emission from argon puffed-gas plasmas (≈1019ions/cm3) and argon-seeded laser-imploded microballons (?1022ions/cm3) are post-processed using the model and the resulting spectra are discussed.  相似文献   

16.
The effect of electric and magnetic plasma microfields on elementary many‐body processes in plasmas is considered. As detected first by Inglis and Teller in 1939, the electric microfield controls several elementary processes in plasmas as transitions, line shifts and line broadening. We concentrate here on the many‐particle processes ionization, recombination, and fusion and study a wide area of plasma parameters. In the first part the state of art of investigations on microfield distributions is reviewed in brief. In the second part, various types of ionization processes are discussed with respect to the influence of electric microfields. It is demonstrated that the processes of tunnel and rescattering ionization by laser fields as well as the process of electron collisional ionization may be strongly influenced by the electric microfields in the plasma. The third part is devoted to processes of microfield action on fusion processes and the effects on three‐body recombination are investigated. It is shown that there are regions of plasma densities and temperatures, where the rate of nuclear fusion is accelerated by the electric microfields. This effect may be relevant for nuclear processes in stars. Further, fusion processes in ion clusters are studied. Finally we study in this section three‐body recombination effects and show that an electric microfield influences the three‐body electron‐ion recombination via the highly excited states. In the fourth part, the distribution of the magnetic microfield is investigated for equilibrium, nonequilibrium, and non‐uniform magnetized plasmas. We show that the field distribution in a neutral point of a non‐relativistic ideal equilibrium plasma is similar to the Holtsmark distribution for the electrical microfield. Relaxation processes in nonequilibrium plasmas may lead to additional microfields. We show that in turbulent plasmas the broadening of radiative electron transitions in atoms and ions, without change of the principle quantum number, may be due to the Zeeman effect and may exceed Doppler and Stark broadening as well. Further it is shown that for optical radiation the effect of depolarization of a linearly polarized laser beams propagating through a magnetized plasma may be rather strong. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
High pressure investigations of matter involve the study of strong shock wave dynamics within the materials which gives rise to many thermal effects leading to dissociation of molecules, ionization of atoms, and radiation emission, etc.The response of materials experiencing a strong shock can be determined by its shock Hugoniot calculations which are frequently applied in numerical and experimental studies in inertial confinement fusion, laboratory astrophysical plasma,etc. These studies involve high energy density plasmas in which the radiation plays an important role in determining the energy deposition and maximum compressibility achieved by the shock within material. In this study, we present an investigation for the effect of radiation pressure on the maximum compressibility of the material using shock Hugoniot calculations. In shock Hugoniot calculations, an equation of state(EOS) is developed in which electronic contributions for EOS calculations are taken from an improved screened hydrogenic model with-l splitting(I-SHML) [High Energy Density Physics(2018) 26 48] under local thermodynamic equilibrium(LTE) conditions. The thermal ionic part calculations are adopted from the state of the art Cowan model while the cold ionic contributions are adopted from the scaled binding energy model. The Shock Hugoniot calculations are carried out for sodium and iron plasmas and our calculated results show excellent agreement with published results obtained by using either sophisticated self-consistent models or the first principle study.  相似文献   

18.
A set of nonlinear equations which can self‐consistently describe the behavior of high frequency Electromagnetic (EM) waves in un‐magnetized, ultra‐relativistic electron‐positron (e‐p) plasmas is obtained on the basis of Vlasov‐Maxwell equations. Nonlinear wave‐wave, wave‐particle interactions lead to the coupling of high frequency EM waves with low frequency density perturbations which result from EM waves radiation pressure. The same as that in conventional electron‐ion (e‐i) plasmas, strong EM waves in e‐p plasmas will give rise to density depletion in which itself are trapped. But on the contrary to that in e‐i plasmas, there no longer exists electrostatic acoustic–like wave in e‐p plasmas due to the absence of mass difference. For linear polarized EM waves, a stationary EM soliton with a spiky structure will be formed. The possible relation of the localized field to pulsar radio pulse is discussed (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
In the present work, we have studied the spatial evolution of the aluminum plasma produced by the fundamental (1064 nm), second (532 nm) and third (355 nm) harmonics of a Q-switched pulsed Nd:YAG laser. The experimentally observed line profiles of neutral aluminum have been used to extract the excitation temperature using Boltzmann plot method whereas the electron number density has been determined from the Stark broadened profiles. Besides we have studied the variation of excitation temperature and electron number density as a function of laser irradiance at atmospheric pressure. In addition, we have performed quantitative analysis of photon absorption and vapor ionization mechanism at three laser wavelengths and estimated the inverse bremsstrahlung (IB) absorption and photoionization (PI) coefficients. The validity of the assumption of local thermodynamic equilibrium is discussed in the light of the experimental results.  相似文献   

20.
Kr喷气箍缩等离子体的数值研究   总被引:1,自引:1,他引:0       下载免费PDF全文
 探讨了Z箍缩等离子体辐射磁流体模拟二维三温物理模型及其数值计算方法,针对“强光一号”加速器上Kr喷气实验的具体条件,利用辐射磁流体力学程序Z-pinch 2D-DG模拟了Kr喷气等离子体聚爆过程,分析了X射线辐射的特点,给出了等离子体密度和温度的演化图像以及喷气箍缩中一些带有普遍性的结论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号