首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 58 毫秒
1.
近红外漫反射光谱检测赣南脐橙可溶性固形物的研究   总被引:3,自引:1,他引:3  
研究了应用可见-近红外漫反射光谱技术快速检测赣南脐橙可溶性固形物的方法。以40个赣南脐橙为标准样本,利用漫反射光谱测定法获取完整赣南脐橙的可见-近红外光光谱(350~2 500 nm),采用多种光谱校正算法,选取不同的光谱波段范围对水果样本的漫反射二阶光谱进行有效信息的提取和分析,并结合偏最小二乘法和主成分回归等定量校正方法,建立了赣南脐橙可溶性固形物的定量数学模型。实验结果为: 在361~2 488 nm波段范围内,偏最小二乘法校正模型的预测精度最好,校正模型的相关系数为0.929,校正标准偏差和预测标准偏差分别为0.517,0.592,其预测集样本的预测值与真实值的相关系数为0.791。实验结果表明:应用近红外漫反射技术对赣南脐橙可溶性固形物的快速无损检测具有可行性。  相似文献   

2.
可溶性固形物和糖酸比是苹果内部品质主要评价指标之一。为此进行苹果糖酸比和可溶性固形物可见/近红外漫反射和漫透射对比检测研究。180个冰糖心和红富士样品被分成建模集和预测集(136∶44),分别用于建立偏最小二乘模型和验证模型的预测能力。在运动速度5个/秒时,采集了冰糖心和红富士两种样品的可见近红外光谱。漫反射和漫透射可见近红外光谱经多元散射校正、标准正态变量变换、基线校正等预处理后,建立了偏最小二乘回归模型。未参与建模的44个样品用于评价模型的预测能力,经比较,漫透射检测方式优于漫反射检测方式,主要因为漫透射检测方式能更有效地克服杂散光。可溶性固形物模型预测相关系数达到0.936,预测均方根误差为0.476°Brix;糖酸比模型预测相关系数达到0.785,预测均方根误差为10.94。研究结果表明: 应用可见/近红外漫透射光谱技术,可实现苹果可溶性固形物和糖酸比在线检测。为大宗水果内部品质分选提供了技术支持和参考依据。  相似文献   

3.
通过设置四种不同的光源强度研究光强对近红外漫反射无损检测梨可溶性固形物的影响,对四种类别光强的光谱定性分析显示四类光谱差异微小,肉眼几乎无法辨别。在进一步的定量分析中,通过主成分分析、逐步线性回归分析以及偏最小二乘法分析的比较,主成分分析(r值跨度:0.253~0.606;RMSEC值跨度:0.549~0.614;RMSEP值跨度:0.455~0.752)与逐步线性回归分析(r值跨度:0.249~0.551;RMSEC值跨度:0.536~0.624;RMSEP值跨度:0.646~0.734)得到的模型较差。通过对光谱进行一阶求导和二阶求导预处理,主成分分析与逐步线性回归分析建模结果仍不理想。通过二阶求导预处理,偏最小二乘法所建的模型得到优化,其中相关系数r值跨度为0.947~0.970,混合模型的相关系数r值达到了0.95 7,分析结果表明光强对梨的近红外漫反射光谱无损检测可溶性固形物的影响差异不大,为光谱仪的田间作业奠定了基础。  相似文献   

4.
为实现苹果可溶性固形物(SSC)的便携式快速检测,利用环形光纤探头和微型光谱仪搭建便携式苹果可溶性固形物光谱采集系统,结合无信息变量消除(UVE)、遗传算法(GA)、竞争性自适应加权(CARS)算法筛选基于偏最小二乘(PLS)的苹果可溶性固形物的近红外光谱特征波长。另外,采用反向区间最小二乘支持向量机(BiLS-SVM)和GA算法优选基于LS-SVM的特征波长变量,分别建立所选特征波长和全波段的PLS模型和LS-SVM模型。试验结果表明,经过GA-CARS算法从全波段1 512个波长中筛选出的50个特征波长建立的PLS模型效果最好,其预测相关系数和预测均方根误差分别为0.962和0.403°Brix。利用该检测装置结合GA-CARS筛选的特征波长,可有效简化苹果可溶性固形物近红外便携式检测模型并提高模型的预测精度,为进一步构建便携式苹果可溶性固形物检测设备奠定了基础。  相似文献   

5.
梨可溶性固形物含量的在线近红外光谱检测   总被引:11,自引:0,他引:11  
应用近红外透射检测技术在线检测梨的可溶性固形物(SSC)。在实验台上以0.5 m·s-1的速度,300 W的光照强度,采用半透射方式检测梨的光谱。实验采用的梨样品为187个,其中147个样品为校正集,40个样品为预测集,应用偏最小二乘回归(PLS)和主成分回归(PCR)建立梨可溶性固形物的在线预测模型。选取550~700 nm, 700~850 nm, 550~850 nm为建模波段范围,发现无论对于PLS还是PCR,都是550~850 nm波段的建模结果好。本实验还研究对比不同的光谱预处理方法(光谱平滑,一阶微分,二阶微分等)对预测模型性能的影响,其中5点S-G(Savitzky-Golay)光谱平滑能有效地提高光谱的信噪比,改善模型预测精度,而一阶微分、二阶微分对模型性能改善基本上没有影响;最好的预测模型相关系数r=0.948 8, 校正标准差RMSEC=0.236,预测标准差RMSEP=0.548。结果表明:PLS模型预测性能较好,梨可溶性固形物的在线检测具有可行性。  相似文献   

6.
可溶性固形物和碰伤是影响番茄品质的两个主要因素。研究的目的是探索可见近红外漫透射光谱同时在线检测番茄碰伤和可溶性固形物的可行性。在单通道送果速度5个每秒条件下,采集番茄近红外漫透射光谱。对比分析碰伤与正常番茄样品的近红外漫透射光谱特性,结果表明,碰伤与正常番茄样品的近红外漫透射光谱在光强上存在明显差异,碰伤果光强要强于正常果,其原因可能是碰伤后果肉变软,透光性变强;在650和675 nm处碰伤果比正常果要多两个吸收峰,可能是碰伤后,番茄表皮颜色发生变化所致。选取贡献率占比最多的前三个主成数,对正常果与碰伤果近红外漫透射光谱主成分定性分析,正常果与碰伤果不能有效聚类,故近红外漫透射光谱主成分定性分析效果不明显,需选择建立高维近红外漫透射光谱定性判别模型。故建立了碰伤番茄样品的近红外漫透射光谱偏最小二乘定性判别模型,误判率为0%,能正确判别碰伤果,故选用碰伤番茄样品的近红外漫透射光谱偏最小二乘定性判别模型作为番茄碰伤果在线剔除分选模型。通过对未参与建模的样品进行验证,能正确识别出碰伤果。经近红外漫透射光谱偏最小二乘定性判别模型剔除碰伤果后,按照可溶性固形物指标进行分级。分别使用全部波段和606~850 nm的波段进行建模预处理,且对全部波段和606~850 nm波段光谱进行2阶导数预处理,前后平滑设为9,利用连续投影算法与遗传算法优选可溶性固形物的光谱建模变量,对比发现,利用未经算法筛选过的606~850 nm波段光谱变量进行建模,效果最好,建立了可溶性固形物在线检测模型,预测集均方根误差为0.43 Brix°。采用未参与建模的样品进行碰伤和可溶性固形物同时在线检测验证,碰伤样品的分选准确率达96%,可溶性固形物样品的分选准确率达91%。表明:番茄碰伤和可溶性固形物近红外漫透射光谱同时在线检测是可行的。  相似文献   

7.
8.
提出了一种利用近红外光谱技术定量分析蜂蜜中可溶性同形物含量(SSC)的新方法,同时对蜂蜜中的水分也进行了研究.在不同光谱范围内,通过对原始光谱的不同预处理,用偏最小二乘法分别建立了SSC和水分的近红外透反射光谱校正模型,所有模型都有高的的预测精度和水分的最优模型都为在全谱范围内,光谱预处理采用Norris平滑+一阶微分+多元信号校正,SSC模型的交互验证决定系数(RCV2)、交互验证误差均方根(RMSECV)、验证集决定系数(RP2)、验证误差均方根(RMSEP).SSC模型分别为0.998 6,0.190,0.998 5和0.127,水分模型分别为0.998 4,0.187.0.998 6和0.125.近红外光谱能实现蜂蜜中SSC和水分的准确测定.水分模型预测结果略好于相关文献的报道.  相似文献   

9.
西瓜可溶性固形物含量的无损检测对提升其内部品质十分重要。为实现近红外光谱对小型西瓜表面各部位可溶性固形物含量的准确预测,减小检测部位差异对预测模型的影响,以“京秀”西瓜为研究对象,分别采集赤道、瓜脐和瓜梗三部位的漫透射光谱信息,利用偏最小二乘算法(PLS)建立并比较单一检测部位和混合所有检测部位的西瓜可溶性固形物近红外光谱预测模型,并分别采用连续投影算法(SPA)和竞争性自适应重加权算法(CARS)对西瓜可溶性固形物近红外光谱变量进行特征波长筛选。结果显示,相比于单一检测部位的模型,混合所有检测部位的校正集样本建立的模型取得了较优的预测结果。同时,利用CARS算法筛选的42个特征波长变量建模,对三种检测部位预测集样本的预测结果分别为赤道RP=0.892和RMSEP= 0.684 °Brix,瓜脐RP=0.905和RMSEP= 0.629 °Brix,瓜梗RP=0.899和RMSEP= 0.721 °Brix。模型得到了很大的简化,且预测精度较高。比较发现,利用SPA算法筛选的19个特征波长变量所建模型的预测精度较低。利用三种检测部位的西瓜样本建立的PLS混合预测模型,结合CARS算法进行有效特征波长变量筛选,可提高西瓜可溶性固形物预测模型的精度,实现西瓜表面各部位可溶性固形物含量的准确预测,减小检测部位差异对近红外光谱预测模型的影响。结果为今后开发便携式设备检测西瓜表面各部位可溶性固形含量提供参考依据。  相似文献   

10.
SPXY算法的西瓜可溶性固形物近红外光谱检测   总被引:3,自引:0,他引:3  
可溶性固形物(SSC)是一种综合参数,主要包括糖、酸、纤维素、矿物质等成分,对评价果实成熟度和品质具有重要意义,影响果实口感、风味及货架期。西瓜可溶性固形物含量的无损快速检测对西瓜成熟度的确定、贮藏及运输过程中西瓜内部品质监控具有十分重要的意义,有助于提高西瓜生产效益和市场竞争力。在西瓜可溶性固形物含量的快速无损近红外光谱检测中,近红外漫透射的方式所需光源的能量大,同时大功率透射会对水果的内部品质产生影响;采用近红外漫反射方式的研究较少,但漫反射采集所需的能量小,有助于实现仪器小型便携化,成本低,同时避免透射引起的水果品质变化。以小型西瓜为研究对象,利用JDSU便携式近红外光谱仪采集西瓜样品瓜梗、瓜脐、赤道部位的近红外反射光谱,在976,1 186和1 453 nm附近有明显的吸收,利用偏最小二乘回归定量分析方法建立西瓜可溶性固形物的近红外光谱无损预测模型。首先,采用光谱-理化值共生距离(SPXY)算法对西瓜不同检测部位的样品集进行划分,以可溶性固形物含量为y变量,光谱为x变量,利用两种变量同时计算样品间距离,以保证最大程度表征样本分布,有效地覆盖多维向量空间,增加样本间的差异性和代表性,提高模型稳定性。将西瓜样品划分为51个校正集和15个预测集,校正集样本的SSC含量涵盖了预测集样本的SSC含量范围,且变异系数均小于9%,样品集划分合理,有助于建立稳健可靠的预测模型。其次,对比分析西瓜瓜梗、瓜脐、赤道检测部位的近红外反射光谱与可溶性固形物含量之间的定量模型的预测精度,结果得出西瓜赤道部位的反射光谱与可溶性固形物含量相关性较高,预测效果较好,预测集相关系数为0.629,预测集均方根误差为0.49%。对于不同检测部位获取的光谱信息所建立的近红外光谱SSC预测模型的精度问题,一方面与光谱的采集方式有关,另一方面与西瓜的产地、品种、成熟期等因素引起的其性状上的差异有关。在模型建立过程中根据实际情况确定西瓜的检测部位。最后,为提高西瓜赤道部位近红外反射光谱与可溶性固形物含量之间的预测模型精度,采用光谱预处理方法进行优化,结果得出经标准归一化预处理后,建立的偏最小二乘回归预测模型效果最佳,预测集相关系数为0.864,预测集均方根误差为0.33%,模型相关性较好,预测精度得到了很大提升。研究结果表明,近红外反射光谱检测小型西瓜赤道部位能很好预测其可溶性固形物含量,为实际生产中近红外光谱无损快速检测西瓜可溶性固形物含量及小型便携式仪器研发提供了技术储备。  相似文献   

11.
苹果糖度近红外光谱分析模型的温度补偿   总被引:2,自引:0,他引:2  
温度变化对水果品质近红外评价有很大影响,需要补偿温度波动对模型的影响。文章研究了温度变化(2~42 ℃)对苹果近红外漫反射光谱的影响,采用剔除温度变量法和内校正法补偿温度对模型的影响,提高预测精度。研究表明,温度与光谱信息存在一定相关性, 其模型R2=0.985,RMSEC=1.88,RMSEP=2.32;未进行温度校正模型的预测标准偏差达到2.55;采用复合预处理方法和改进的遗传算法对光谱数据优化,剔除温度变量法模型的R2=0.954,RMSEC=0.63,RMSEP1=0.72,RMSEP2=0.74;内校正法的模型R2=0.952,RMSEC=0.64,RMSEP1=0.69,RMSEP2=0.68;相比未进行温度补偿模型均提高了预测精度。结果显示:温度对苹果近红外光谱影响呈非线性变化,剔除温度变量法和内校正法可用于补偿温度对模型的影响,可提高模型预测精度。  相似文献   

12.
结球甘蓝是一种富含碳水化合物的常见蔬菜,可溶性糖含量是决定其品质的重要参数。可溶性糖易溶于水,是蔬菜和水果口味的有效调节剂。作为碳水化合物,可溶性糖由三种元素C,H和O组成,其分子吸收光谱主要由被检测材料的分子中C-H,O-H和CO等基团的组合频率吸收和倍频吸收组成,包含丰富的有机物信息。因此,采用近红外光谱和化学计量学方法,探索结球甘蓝可溶性糖含量的快速检测方法。用德国布鲁克公司的MATRIX-Ⅰ型傅里叶变换近红外光谱仪采集161份结球甘蓝样本光谱数据。波数范围:12 800~4 000 cm-1(780~2 500 nm)。蒽酮比色法测量样本的可溶性糖。综合应用马氏距离法(MD)和蒙特卡洛交叉验证法(MCCV)剔除异常样本,采用Kennard-Stone(K-S)法将样本按照给定比例划分为校正集和验证集。分别使用Savitzky-Golay卷积平滑(S-G),一阶导数(FD),二阶导数(SD),多元散射校正(MSC)和变量标准化(SNV)及它们的组合共12种方法对样本进行光谱预处理,获得最佳预处理方法,提高光谱数据的信噪比。采用竞争性自适应重加权采样法(CARS)筛选偏最小二乘回归(PLS)模型中回归系数绝对值大的波数点,去掉回归系数绝对值小的波数点,以有效选择与所测特性值相关的最优波数组合,获得具有良好鲁棒性和强预测能力的校正模型。使用模型决定系数R2、交互验证均方根误差(RMSECV)、预测均方根误差(RMSEP)作为模型精度评价指标。根据蒙特卡洛交叉验证法和马氏距离剔除异常样本的原理,共剔除10个光谱或者化学值异常的样本。最终参与建模分析的样本个数为151。异常样本剔除后,通过K-S法将样本按照3∶1被分成校正集(110个样本)和验证集(41个样本)。使用原始光谱数据,预处理后的光谱数据和对应于优选波数的光谱数据,建立PLS模型。结果表明,利用MSC+FD光谱预处理可以提高建模精度,校正集R2从处理前的0.68增长到0.93,MSC+FD是本研究中理想的光谱数据预处理方法。利用CARS法共优选了84个建模波数。在12 000~10 000 cm-1波数区域内,有O-H键2级和C-H键3级倍频伸缩振动吸收,此区域主要的背景信息为水和其他含氢基团,在此区域内共包含了36个选定的波数。在8 500~6 000 cm-1区域,存在糖类和水的O-H键的1级倍频伸缩振动吸收,葡萄糖的O-H键的1级倍频伸缩振动吸收,该区域是包含反映可溶性糖成分的主要光谱区间,背景影响较小,CARS方法在此区域共选择了15个建模波数。5 800~4 000 cm-1区域与12 000~10 000 cm-1区域相似,包含的选定波数多,CARS方法在此区域选择了33个建模波数。利用CARS对参与建模的波数进行优选,减少了无关信息,降低了模型的复杂度,选择的波数不但引入了表征待测组分的光谱,同时还引入了代表背景信息的光谱,使得校正模型适应性增强。建立了结球甘蓝可溶性糖的全谱PLS模型,根据CARS波数优选结果,建立了结球甘蓝可溶性糖的CARS-PLS模型。对于全谱PLS定量模型,校正集的决定系数R2为0.93,RMSECV为0.157 2%,RMSEP为0.132 8%。对于CARS-PLS模型,校正集的决定系数R2为0.96,RMSECV为0.076 8%,RMSEP为0.059 4%。数据表明,两种模型具有相当的R2,但CARS-PLS模型的RMSECV是全谱PLS模型的1/2。RMSEP也接近1/2,CARS-PLS模型比全谱PLS定量模型所用建模变量少,模型得到简化,精度更优。用CARS-PLS模型对验证集41个样本进行预测,预测集决定系数R2为0.86,预测标准误差为0.059 4%。提供了一种工作效率较高的结球甘蓝质量无损检测方法。  相似文献   

13.
研究利用近红外(924~1 720 nm)反射光谱预测了洋葱的可溶性固体物含量。实验选取了三种不同产地和不同采收期的洋葱为样本(268)。在重复采集光谱数据之后,榨取对应光谱采集处洋葱块汁,测定可溶性固体物参考值。研究对比了Savitzky-Golay平滑、散射校正和微分处理等预处理方法,同时基于偏最小二乘回归方法建立了统计模型。结果表明,带S-G平滑的微分处理在平滑窗口为32,跨度为10时效果最佳。一阶微分比二阶微分的预处理效果要好,预测复相关系数R2为0.87,均方根误差RMSEP为2.42 °Brix。对比显示,无平滑处理光谱数据散射校正预处理得到的结果最好,预测复相关系数R2为0.88(RMSEP=2.31 °Brix)。采用交叉验证得到的PLSR模型预测复相关系数R2为0.90,RMSEP为1.84 °Brix,其相对分析误差RPD为3。说明加散射校正处理的近红外反射光谱可用于洋葱的可溶性固体物检测。  相似文献   

14.
便携式近红外光谱仪器现状及展望   总被引:1,自引:0,他引:1  
近红外光谱分析技术具有速度快、操作简单等优点,在农业、制药等行业得到了大量应用,其中一些应用需要将仪器携带到分散的分析现场使用,为满足这一需求,很多体积小、便于移动的便携式近红外光谱仪被研制出来。这些仪器的种类较为繁多,采用了很多不同的基本原理,使用了不同的光路结构。文章综述了国内外便携式近红外光谱仪的技术现状,根据光路结构的不同将仪器分成滤光片型、光栅型、傅里叶变换型、声光可调滤波器型以及使用微机电系统(MEMS)的新型光谱仪等类型,重点介绍各类仪器的原理和主要部分的结构,同时简要介绍不同类型仪器的特点,并列举典型产品。也对测量附件、操作、显示等外围部分的设计作简要介绍,这些附件针对便携应用采取了特殊的设计。通过介绍,为新型便携式近红外光谱仪的研制提供借鉴。最后,对便携式近红外光谱仪器的现状作总结,并对未来国内外技术的发展进行展望。  相似文献   

15.
为了探索一种简捷、快速、高效的西红柿品质检测方法,应用近红外光谱技术与光纤传感技术相结合的新方法,快速测量西红柿果浆样品中营养成分的含量。实验所用的主要仪器为近红外光纤光谱仪,波长范围为900~2 500 nm。以164个西红柿样品为标准样品,进行了光谱采集及相应的化学值测定。实验数据采用偏最小二乘法(PLS)进行回归,建立西红柿果浆中总酸及可溶性糖含量的数学模型,并对回归方法进行统计分析。结果为:西红柿果浆中总酸验证集的决定系数(R2)为0.967,均方根误差(RMSEC)为0.133,预测均方根误差(RMSEP)为0.103;总糖验证集的决定系数(R2)为0.976,均方根误差(RMSEC)为0.463,预测均方根误差(RMSEP)为0.460。均达到了较好的预测结果,表明该方法对定量分析西红柿果浆中多组分含量是可行的。基于该方法快速、简便及可对同一样品多组分含量同时分析的优点,它是一种极具发展前途的传感器,正在逐渐成为国际传感器领域的研究热点。  相似文献   

16.
基于近红外漫反射光谱的香梨类别定性分析   总被引:5,自引:0,他引:5  
基于近红外(near infrared, NIR)漫反射光谱分析技术对库尔勒香梨中的脱萼果和宿萼果进行了自动化判别试验研究。用对不同波段范围、不同光谱预处理方法(MSC、SNV、微分光谱)和不同主成分因子数对香梨类别判别结果的影响进行了对比分析,建立了香梨类别的定性判别模型。研究结果表明:用判别分析(discrimant analysis,DA)方法在9 091~4 000 cm-1范围结合原始光谱建立的DA判别模型最优,该方法对校正集正确分类率达100%,预测集正确分类率为95%。  相似文献   

17.
用傅里叶变换近红外(FTNIR)光谱透射方式对新鲜苹果汁溶性固形物含量(SSC)进行了快速定量分析。实验共测定了60个果汁样品的SSC,并采集了样品的近红外光谱数据。42个样品用来建模,剩下的18个用来验证模型的性能。对实验室测得的SSC与FTNIR光谱数据进行相关性分析,以TQ 6.2.1定量分析软件中集成的主成分回归法(PCR)和偏最小二乘回归法(PLS)建立了检测模型。该研究对比了不同光谱范围内建立的检测模型的性能。根据预测平方根误差(RMSEP)和相关系数(r2)进行不同模型的预测性能,最好的新鲜苹果汁SSC预测模型的RMSEP=0.603 0Brix,r2=0.997。结果表明FT-NIR可以作为一种可靠、准确、快速的无损检测方法来评价新鲜果汁的可溶性固形物含量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号