首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 968 毫秒
1.
脉冲激光作用单晶硅的等离子体光谱分析   总被引:1,自引:0,他引:1       下载免费PDF全文
从激光与物质相互作用理论出发,对脉冲激光作用单晶硅的热特性进行分析。建立一套实验装置,所用激光光源的波长为1 064 nm,脉宽为10 ns,重复频率为1 Hz。得到单晶硅的等离子体谱及热辐射谱,在单晶硅的光电性质基础上对其热表面损伤进行理论分析。提取380~460 nm波段的单晶硅等离子体光谱,分析了谱图中SiⅠ390.52 nm,SiⅡ385.51 nm,SiⅡ413.12 nm三条谱线的相对强度与激光输出功率密度的对应关系。  相似文献   

2.
激光诱导击穿光谱技术(LIBS)是一种广泛应用于科学和工程方面的元素分析技术。LIBS测量一些微量元素时存在探测极限高的不足,因此增强LIBS信号强度,降低元素探测极限,对扩展其应用范围有着重要的意义。为了实现LIBS光谱信号的增强,提出多次放电增强激光诱导击穿光谱方法,并以固体铝合金材料为例进行了光谱信号强度增强的研究。实验发现,激光作用在铝合金材料上烧蚀样品产生等离子体并溅射到样品上方高压放电电极所在区域,该区域在等离子体产生之后50 μs之内均可以诱导高压电极放电。因此采用高频脉冲电源可以实现一次LIBS产生的等离子体诱导电极多次放电。多次放电会对等离子体进行多次激发,同时多次放电对等离子的加热作用会延缓等离子体冷却速率从而延长等离子体的持续时间,两者共同作用可以增强LIBS光谱信号强度,进而降低LIBS对微量元素的探测极限。使用频率为100 kHz的高频直流脉冲电源,利用数字延迟脉冲发生器同步激光与高压电源,在激光过后3.6 μs触发高压放电,一次LIBS产生的等离子体可以诱导电极5次放电,即对等离子体进行5次激发和加热。利用光谱仪对5次放电等离子体光谱进行积分测量。实验结果表明:使用多次放电增强之后,等离子体持续时间得到大幅延长,光谱信号强度得到大幅增强,其中,Mg Ⅱ (~279 nm)的信号强度可以增强约48倍,Al Ⅱ (~358 nm)的信号强度可以增强约72倍,微量元素Mn Ⅰ (~403 nm)的信号强度增强约6.3倍,微量元素Cu Ⅰ (~403 nm) 的信号强度增强约8.3倍。Mn Ⅰ (~403 nm)和Cu Ⅰ (~403 nm) 的探测极限分别降低为LIBS单次放电的1/6和1/8。多次放电增强激光诱导击穿光谱方法很好地增强了LIBS的光谱信号强度,降低了对微量元素的探测极限,扩展了LIBS技术的应用范围。该方法有潜力应用到贵重物品、稀有材料及文物的鉴定之中。  相似文献   

3.
为了提高激光诱导击穿光谱技术(LIBS)的检测灵敏度和辐射光谱特性,采用再加热正交双脉冲结构对样品中的4种元素Fe,Pb,Ca和Mg以及含有不同浓度重金属元素Cr的土壤样品进行分析。研究了4条特征谱线FeⅠ:404.581 nm,PbⅠ:405.78 nm,CaⅠ:422.67 nm和MgⅠ:518.361 nm的光谱强度和信背比随两激光脉冲之间时间间隔的变化关系,获得了两激光脉冲之间最佳的时间间隔为1.0 μs。在单脉冲和双脉冲条件下,得到了4条特征谱线FeⅠ:404.581 nm,PbⅠ:405.78 nm,CaⅠ:422.67 nm和MgⅠ:518.361 nm光谱强度的增强倍数分别为2.23,2.31,2.42和2.10;分析了特征谱线FeⅠ:404.581 nm和CaⅠ:422.67 nm谱线强度随时间的演化特性以及4条特征谱线信背比随光谱采集延时的变化关系,双脉冲能有效延长光谱强度的衰减时间以及提高特征谱线的信背比;比较分析了等离子体温度和电子密度随时间的演化特性,在双脉冲条件下,等离子体温度最大升高了730 K,电子密度最大增加了1.8×1016 cm-3。单脉冲和双脉冲条件下获得重金属元素Cr的检测限分别为38和20 μg·g-1,再加热正交双脉冲技术使元素检测限下降近2倍。以上结果表明:再加热正交双脉冲能有效地提升LIBS技术的检测灵敏度和光谱特性,为进一步降低元素的检测限提供了有效的方法。  相似文献   

4.
光谱信号增强是提高激光诱导击穿光谱技术分析性能的重要手段之一,对等离子体进行空间约束由于装置简单且约束效果好而常被采用,等离子体的特性会直接影响空间约束的效果,而等离子体的特性与实验系统中激光的聚焦情况密切相关,为研究激发光源的聚焦情况对半球形空腔约束等离子体光谱增强特性的影响,通过控制透镜到样品之间的距离(LTSD)来改变激光的聚焦位置,分别在无约束和有半球形空腔约束两种实验条件下,烧蚀合金钢产生等离子体,采集15个不同LTSD位置时等离子体的时间演变光谱,得到谱线强度和增强倍数随着LTSD和采集延时的二维空间分布图。研究结果发现:无约束情况下,谱线强度分别在LTSD为94和102 mm时出现峰值,在采集延时小于8 μs时,谱线强度的最大值在LTSD为94 mm的位置,采集延时大于8 μs后,谱线强度的最大值出现在LTSD为102 mm的位置;当用半球空腔约束等离子体,谱线强度先后在采集延时范围为4~10和12~15 μs出现第一次增强和第二次增强。谱线强度出现第二次增强的主要原因是被半球腔内壁反射的冲击波与等离子体相互作用后会继续向前传播,遇到另一侧的腔壁再次被反射,进而对等离子体产生二次压缩。分析增强倍数随LTSD和采集延时的二维变化关系发现,第一次增强的最大增强倍数随LTSD的变化没有明显规律,增强倍数在2~6之间波动;谱线第二次增强时的增强倍数相对较高,最大增强倍数随着LTSD变化呈现出先增大再减小,然后再小幅增加后降低的变化规律,在LTSD为96 mm时达到最大值,两条谱线的最大增强倍数约为6倍。分析出现最大增强倍数对应的延迟时间发现,第一次增强出现的最优延迟时间在6~9 μs之间变化,当LTSD在85~93 mm范围时,最优延迟时间保持不变,当LTSD在94~105 mm时,出现先降低再增大的变化规律;第二次增强出现的延迟时间主要在14~15 μs,随着LTSD的变化没有明显的变化规律。  相似文献   

5.
纳秒激光诱导空气等离子体存在从紫外、可见、近红外乃至射频微波的宽谱段辐射,但目前的研究大多关注紫外到可见波段的光谱辐射。激光等离子体作为一种新型的红外辐射源具有很多优势,相比于红外干扰弹以及红外干扰手段而言,空气等离子体红外辐射源可以灵活布置,成本低廉,因此研究空气等离子体的红外辐射特性就很有必要。针对目前脉冲激光诱导空气等离子体的红外干扰研究需要,对激光波长为532 nm的纳秒脉冲激光诱导空气等离子体的红外辐射特性进行实验研究,探讨激光能量对空气等离子体红外辐射强度的影响规律,以及空气等离子体红外辐射的角度分布特性,分析了等离子体红外辐射的可能产生机制。实验结果表明,激光诱导空气等离子体在950~1 700 nm范围内的红外光谱为线状谱和连续谱的叠加。其中线状谱主要是氮和氧的中性原子谱线,并且氮原子红外辐射占主导。随着激光能量的增加,由于空气击穿产生的氧和氮原子数量增加,导致空气等离子体红外辐射的谱线强度逐渐增大。随着红外探测角度的变化,在探测角度为75°时,OⅠ 1 128.63 nm和NⅠ1 246.96和1 362.42 nm谱线强度达到最大,在探测角度为120°时,NⅠ 1 011.46和1 053.96 nm谱线强度达到最大,这是因为空气等离子体红外辐射强度随探测角度变化呈现空间非对称性,表明空气等离子体内不同粒子的空间分布呈现非对称性。  相似文献   

6.
土壤重金属污染问题一直备受关注,利用高光谱遥感对其进行研究取得了大量的成果,主要集中在利用土壤光谱的导数变换、连续统去除等常规方法预测土壤重金属含量上。土壤光谱数据与非线性非平稳的机电信号、医学信号等具有一定的相似性。通过希尔伯特黄变换(Hilbert-Huang transform, HHT),对土壤铅(Pb)污染光谱进行频率域分析,实现土壤Pb污染光谱的HHT鉴别,并建立土壤Pb含量预测模型。首先,进行土壤Pb污染实验,采集土壤Pb污染样品的光谱、含水率及有机质含量;其次,通过土壤Pb污染样品光谱的HHT时频分析和第二个本征模函数(intrinsic mode function, IMF)分量(IMF2)瞬时频率的二阶导数识别土壤Pb污染的特征波段;最后,选择合适的频率域参数、土壤光谱一阶导数、土壤有机质含量及土壤含水率作为参数,利用箱形图、聚类分析、偏最小二乘法建立土壤Pb含量预测模型。研究结果表明:土壤Pb污染的HHT时频分析图可以鉴别土壤Pb污染光谱,未受污染的土壤光谱HHT时频分析图在波段序列为250~430之间没有异常信号,Pb污染土壤的光谱HHT时频分析图在波段序列为250~430之间存在多个异常信号,并且随着浓度的升高,异常信号分布范围越来越广,当污染浓度达到800 μg·g-1时,土壤样品的光谱信号在波段序列为270处、频率为0.3 Hz之前出现了较强的异常信号;土壤Pb污染光谱经验模态分解(empirical mode decomposition, EMD)处理后,得到的未受污染的土壤光谱IMF2的瞬时频率的二阶导数的突变非常微弱,而Pb污染的土壤光谱IMF2的瞬时频率的二阶导数存在明显的突变点,根据突变点及土壤Pb污染光谱的IMF2的瞬时频率的二阶导数识别的土壤Pb污染光谱的特征波段区间为2 150~2 300 nm;利用不同浓度Pb污染下土壤光谱Hilbert能量谱峰值、EMD能量熵、一阶导数、有机质和含水率,通过箱形图去除了六组异常样品,然后利用聚类分析的方法将去除异常样品后的土壤Pb污染样品分为两类,最后将Hilbert能量谱峰值、EMD能量熵、2 134 nm波段一阶导数、790 nm波段一阶导数、1 276 nm波段一阶导数、2 482 nm波段一阶导数、有机质和含水率作为参数建立两类数据的BC-PLSR(boxplot cluster-partial least squares regression)模型预测土壤中Pb含量,经验证模型精度较高,相关系数分别为0.88和0.99。  相似文献   

7.
激光脉冲重复频率对等离子体辐射特性的影响   总被引:2,自引:0,他引:2  
为了提高激光诱导击穿光谱质量,采用Nd∶YAG激光器输出的纳秒脉冲激光激发产生土壤等离子体,采用光栅光谱仪和光电检测系统记录了元素谱线AlⅠ394.401 nm,BaⅠ455.403 nm,FeⅠ430.791 nm和TiⅠ498.173 nm的辐射强度和信背比,研究了激光脉冲重复频率(5,10和15 Hz)对等离子体辐射特性的影响。实验结果表明,在相同的激光输出能量条件下,当采用15 Hz的激光脉冲重复频率时,元素Al,Ba,Fe和Ti的谱线强度要比5 Hz时的分别提高50.94%,112.7%,107.46%和99.38%,光谱信背比分别提高15.16%,24.08%,40.26%和72.06%。通过测量等离子体参数,解释了激光脉冲重复频率对等离子体辐射特性的影响机理。  相似文献   

8.
激光诱导击穿光谱(LIBS)因具有实时快速、多元素分析、样品损伤性小等优势,已成为检测未知物质元素组分以及相应元素含量的重要手段。近期的一些研究表明,百纳秒级别激光脉冲由于在确保有效击穿阈值的条件下延长了激光与样品作用时间,使得其LIBS光谱质量相对于传统10 ns级激光脉冲得到了提高;适度降低环境气压(至10~4 Pa量级), LIBS光谱强度和信背比均得到明显提高。为探究低气压对长脉宽(百纳秒级)激光诱导铜合金等离子体光谱特性的影响,采用自主研发80 ns脉宽Nd∶YAG激光器(波长1 064 nm,单脉冲能量20~200 mJ)作为激发光源,样品为BYG19431的锡青铜(基体元素Cu质量百分数为92.9%,低含量元素Fe质量百分数为0.007 8%),通过样品气氛控制系统改变环境气压,分别研究了低环境压力(1.01×10~5, 9.6×10~4, 9.2×10~4, 8.8×10~4和8.4×10~4 Pa)下铜合金基体元素Cu与低含量元素Fe光谱特性。实验中,激光脉冲重复频率为1 Hz,每次打击均为新鲜表面(通过真空腔内的可控旋转平台更换样品位置),每个能量和气压下分别选取5个脉冲能量较稳定的光谱,取平均值作为当前实验条件的最终实验结果,激光脉冲能量的实时监测由透反比1∶1分束镜及能量计完成。研究发现,基体元素谱线(CuⅠ324.75 nm),常压下低能量(20 mJ, 40 mJ)时均存在较严重的自吸收现象。在60 mJ时,虽自吸收效应得到改善,但谱线背景强度升高,且激光对样品的损伤加大。为在低光谱背景,微样品损伤的条件下实现光谱质量的进一步提升,实验激光能量为20 mJ。结果表明,随着环境气压降低,基体元素Cu自吸收程度大幅度降低,样品中低含量Fe元素谱线信背比增加,等离子温度升高,谱线展宽变窄。气压为8.4×10~4 Pa时,与常压相比基体元素铜(CuⅠ324.75 nm)与微量元素铁(FeⅠ330.82 nm)谱线信背比分别增强5.31和2.43倍;等离子体温度提升了21.6%;FeⅠ330.82 nm谱线展宽由0.29 nm降到0.21 nm,在一定程度提高了LIBS元素谱线的分辨率。  相似文献   

9.
利用脉宽8 ns,波长为532 nm的Nd:YAG单脉冲纳秒激光器,在一个标准大气压下入射到土壤中(样品土壤来自蚌埠学院校园),改变样品温度,获得了不同样品温度下激光诱导击穿光谱.通过分析光谱,得到土壤中不同特征谱线的强度和信噪比.分别利用Boltzmann斜线法和Stark展宽法计算并分析了等离子体电子温度和电子密度随样品温度的演化规律;同时讨论了提高样品温度和激光诱导土壤等离子体辐射增强的原因.实验结果表明,随着样品温度的升高,等离子体的谱线强度、信噪比、电子温度和电子密度会逐渐增强,并且在温度为100℃时达到最大.  相似文献   

10.
氩气中飞秒超强紫外激光成丝的实验研究   总被引:1,自引:1,他引:0  
中心波长808 nm,脉宽70 fs的钛蓝宝石激光系统三倍频后产生的中心波长268 nm、带宽1.5 nm、单脉冲能量0.58 mJ的紫外超快激光光源经凹面镜聚焦后注入到样品池氩气中,由强场非线性效应诱导形成了等离子体通道,并对紫外激光脉冲光谱进行展宽.实验着重研究了268 nm波段的紫外激光成丝特点,以及在不同气体压强、聚焦长度、气体种类等条件下紫外光丝对光谱的调制作用.在2.2×105Pa氩气气压、焦距1000 mm条件下,可以获得光谱宽度3.3 nm,加宽为人射紫外脉冲的2.2倍.实验观察到压强和聚焦长度的增加都有利于等离子体通道的增加,有利于光谱展宽.紫外激光诱导的等离子体通道为在紫外波段内获得极端超快激光脉冲提供了有效的途径.  相似文献   

11.
利用激光诱导击穿光谱结合标准加入法定量分析了铅蓄电池厂含铅污泥中重金属铅元素含量,标准加入法有效避免了外标法与内标法制作标准曲线时基质不同对LIBS检测结果的影响,且样品处理过程简单。实验采用中心波长为1 064 nm的Nd∶YAG脉冲激光器作为激发光源,以高分辨率、宽光谱段的中阶梯光栅光谱仪和增强型电荷耦合器件为谱线分离与探测器件,选取铅的PbⅠ:405.78 nm特征谱线作为分析线,以FeⅠ:404.58 nm特征谱线作为内标线进行结果计算。预实验确定较佳的实验条件后(激光脉冲能量:128.5 mJ,延时:2.5 μs,门宽:3 μs),对铅蓄电池厂的未知铅泥样品中铅元素进行定量分析,结果表明加入铅在0~25 000 mg·kg-1范围内谱线不会产生自吸收,PbⅠ:405.78 nm信号强度与铅加入量呈很好的线性关系,由此确定合适的铅加入量为0~25 000 mg·kg-1。在此基础上配制四个样品,基质均为铅蓄电池厂含铅污泥,加入铅浓度分别为5 000,10 000,15 000,20 000 mg·kg-1,每个样品设置三个平行样,验证实验重复性及可靠性,并与ICP-MS检测结果对比,结果直线外推误差为-14.8%。12个样品单次计算结果误差介于为-24.6%~17.6%之间,含铅量平均值为43 069 mg·kg-1,相对误差为-2.44%。  相似文献   

12.
为了提高激光诱导击穿光谱(LIBS)技术对土壤中重金属元素的检测灵敏度,降低检测限,以国家标准土壤中Cr元素为研究对象,实验时,在LIBS装置中与样品接近的聚焦透镜下方安装一个锥形罩,锥形罩的小端面直径为20 mm,大端面直径为45 mm,目的是对等离子体发射信号形成空间约束,并且在一定程度上约束等离子体本身。实验得到CrⅠ425.44 nm的最佳延迟时间为1.3 μs,相对标准偏差低于10%。与无锥形空间约束的装置相比,Cr的特征光谱强度增强了7%以上。以土壤中的Cr在60~400 μg·g-1之间的浓度建立定标曲线,有空间约束下定标曲线的线性拟合相关系数为0.997 71,Cr的检测限为18.85 μg·g-1,而没有空间约束下定标曲线的线性拟合相关系数为0.991 22,Cr的检测限为36.99 μg·g-1。由此表明锥形空间约束能够提高目标元素的灵敏度和光谱强度,在LIBS技术检测土壤中Cr元素时有很好的辅助作用。  相似文献   

13.
利用激光诱导击穿光谱(LIBS)对溶液中的重金属元素Cr进行分析,开发一种快速、实时、在线的原位检测技术。采用1064nm的Nd∶YAG脉冲激光发生器作为光源,在相同的实验条件下,对配制的5种浓度的K2Cr2O7溶液进行击穿以产生等离子体,选取Cr的425.43nm线作为特征谱线,利用光谱仪自带的CCD探测器对谱线的LIBS信号进行收集,获得了5种浓度下Cr元素的光谱强度,建立了Cr元素谱线强度与其浓度拟合曲线。结果表明,溶液中Cr元素的浓度与其LIBS谱线强度有很好的线性关系,线性拟合决定系数达到0.9822。实验所得的结果为LIBS技术探测水质中的微量有毒金属元素提供了可行性,同时也为LIBS技术检测水质中金属元素含量提供了依据。  相似文献   

14.
张颖  张大成  马新文  潘冬  赵冬梅 《物理学报》2014,63(14):145202-145202
利用激光诱导击穿光谱技术对食用明胶样品中的铬元素进行定量分析.采用Nd:YAG脉冲激光器三倍频输出的355 nm激光诱导击穿食用明胶产生激光等离子体,测量等离子发射光谱.实验数据表明:使用内标法定量分析食用明胶样品中铬元素浓度分别为10—200 ppm(1 ppm=10-6)时,铬元素含量与分析谱线(CrI:245.43 nm)强度之间具有很好的线性关系.分析了光谱探测延迟时间对明胶中铬元素激光诱导击穿光谱的影响,利用信号强度与信噪比获得了优化的光谱探测延迟时间实验参数.  相似文献   

15.
杨瑞兆  苏雪娇  於有利  周卫东 《强激光与粒子束》2018,30(9):099001-1-099001-4
采用两台波长1064 nm的调Q脉冲Nd ∶YAG激光器和多通道小型光纤光栅光谱仪,建立了一套共线双脉冲激光诱导击穿光谱分析装置。与单脉冲激光诱导技术相比,在最佳双脉冲时间延时8 μs时,Mn I 403.07 nm和Cr I 425.43 nm的光谱强度分别增加了14.3倍和17.2倍,以这两条谱线为分析线,铝合金中Mn和Cr的检测限分别由单脉冲时的73和94.5 μg/g降低至双脉冲时的3.76和4.26 μg/g,检测灵敏度提高了约20倍。  相似文献   

16.
利用课题组自主研制的便携式激光诱导击穿光谱测量系统定量分析土壤及固体废弃物中四种重金属元素Pb,Cd,Cr和Cu.实验采用中心波长为1064 nm的Nd:YAG脉冲激光器作为激发光源,工作频率为3 Hz,单脉冲能量为100 mJ,脉冲宽度为6 ns;以高分辨率、宽光谱段的中阶梯光栅光谱仪和增强型电荷耦合器件为谱线分离与探测器件,探测范围为200~500 nm,分辨率为0.08~0.12 nm.为了提高光谱强度及检测灵敏度,通过半球空间约束装置对等离子进行约束,并采用多芯光纤实现多通道不同角度光谱信号收集,接收角度为45°.实验时激光重复频率为2 Hz,延时为1.5μs,门宽为1.05 ms.文章创新性地将曲线拟合代替直线拟合用于标准加入法定量分析基质未知样品中重金属元素,有效提高了测量结果的准确性,尤其是低浓度的土壤样品,直线拟合无法定量分析重金属含量,相比而言,曲线拟合相关系数更高,测量结果更接近国标方法,可以满足一级土壤污染的检测.七个土壤及固体废弃物样品检测的相对误差如下,直线拟合相对误差分别为:Pb 1.26%~79.38%,Cr-22.44%~82.06%,Cu 15.09%~190.50%,Cd 32.76%~167.96%,曲线拟合相对误差为分别Pb-4.19%~11.92%,Cr-38.31%~9.26%,Cu-7.24%~26.86%,Cd-10.52%~12.94%,相对误差平均值为10.47%.  相似文献   

17.
液体阴极辉光放电-原子发射光谱是近些年兴起的一种水体金属元素检测技术。该技术具有开放大气环境工作,进样简便,体积小,运行费用低,可同时检测多种金属元素等显著特征。根据之前的研究工作可知,金属元素的浓度不仅与自身的某一条谱线强度有关,而且还与自身其他的谱线或者基体中其他元素的谱线强度有关。为提高该技术的检测能力和精度,降低实验过程中基体效应的影响,以及更加充分地利用光谱信息,采用多元线性回归法对光谱信息进行定量分析。选取Pb Ⅰ 368. 35 nm和Pb Ⅰ 405.78 nm两条特征谱线,建立Pb元素浓度与这两条光谱线强度的二元线性回归方程;相比于标准曲线法,Pb元素的拟合度R2从0.986 5提高到0.998 7,两组Pb测试液的相对误差从34.00%和29.00%降低到14.20%和1.51%。为降低复杂成分中基体效应的影响,建立Na的浓度与Na Ⅰ 589.38 nm,Zn Ⅰ 213.8 nm,PbⅠ405.78 nm和Hβ四条特征谱线强度的四元线性回归方程;拟合度R2从标准曲线法的0.955 8提高到0.995 6,两组Na测试液的相对误差从11.67%和14.71%降低到2.33%和3.57%。以上结果表明:相比于标准曲线法,多元线性回归法可以降低实验过程中基体效应的影响,并且能更加充分地利用光谱信息,能提高拟合度R2,以及降低测量的误差,从而提高液体阴极辉光放电-原子发射光谱定量分析金属元素的精度。  相似文献   

18.
为促进LIBS技术在土壤微量重金属元素检测中的应用,提高特征谱线的光谱强度和信背比,对实验参数进行优化,并对Cr元素进行分析.首先对激光器激发能量、样品距透镜距离和光谱仪采集延时等实验参数进行优化.对比激光器能量从60 m J到110 m J的谱线强度和信背比,当选用90 m J的激发能量时可以得到最佳实验结果.其次,...  相似文献   

19.
基于激光诱导击穿光谱技术的土壤泥浆中Pb元素检测   总被引:3,自引:1,他引:2  
激光诱导击穿光谱(LIBS)作为一种新兴的元素分析技术,具有实时在线、非接触、多元素同时探测等渚多优点.将LIBS技术引入土壤泥浆重金属污染的检测分析,力图发展一种针对泥浆重金属污染监测的原位传感技术.实验选择Pb作为探测元素,Mn为内标元素;采用重复频率10 Hz的Nd:YAG调Q激光器的二倍频(532 nm)输出作为激发光源,OCD收集信号,对实验室配制的不同浓度Pb泥浆样品的LIBS信号进行了探测分析.获得了各种浓度下Pb泥浆样品在Pb 405.78 nm和Mn 403.07 nm处的原子线强度比IPb/IMn及其随浓度变化的规律.结果显示IPb/IMn与样品的含铅浓度有着很好的线性关系,线性拟合相关系数R2达到0.994 9.初步证实了采用内标法对土壤泥浆中重金属Pb进行LIBS检测分析的可行性.文章还对泥浆重金属LIBS检测的影响因素进行了讨论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号