首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
Li XC  Yuan N  Jia PY  Niu DY 《光谱学与光谱分析》2010,30(11):2894-2896
采用介质阻挡放电等离子体喷枪装置,在大气压下流动氩气中产生了射流等离子体。利用光电倍增管,对射流等离子体进行了时空分辨测量,分析了等离子体喷枪内介质阻挡放电和外部等离子体羽的放电特性。利用高分辨率光谱仪采集等离子体羽处的发射光谱,通过对发射光谱中OH(A2Σ+→X2Π,307.7~308.9nm)及N2+的第一负系(B2Σ+u→X2Π+g,390~391.6nm)谱线拟合得到了射流等离子体的转动温度,拟合得到的转动温度分别为443和450K。在5%的误差范围内,这2种方法得到的结果是一致的。由于在大气压下,转动温度近似等于产生气体放电的气体温度,所以可以确定大气压射流等离子体气体温度。利用该方法研究了不同电压下的气体温度,发现气体温度随着外加电压增加而增大。  相似文献   

2.
采用铜片-单匝线圈电极、螺旋缠绕电极和双铜片电极3种结构的放电装置,以氩气作为工作气体,在正弦波激励下获得了大气压等离子体射流。利用电学方法测量了放电电流以及电荷量,并对放电脉冲和放电功率进行了研究;利用发射光谱法对射流的等离子体参量进行了空间分辨测量,并根据ArⅠ 763.5 nm和Ar Ⅰ 772.4 nm的光强计算了电子激发温度。结果发现:在外加电压的正负半周期内,电流脉冲的个数和幅值呈现非对称的变化趋势;随着外加电压的增加,3种结构电极的放电功率从1.7 W逐渐增加到6.0 W;在相同的外加电压情况下,电极面积越小,等离子体射流的长度越长;3种等离子体射流的电子激发温度在1 348.5~3 212.1 K之间,并且随着气体流量的增加,各位置的电子激发温度总体上呈下降趋势,而等离子体的电子密度呈上升趋势。实验结果表明:外加电压对放电功率有一定影响;射流长度与电极面积有关;气体流量对电子激发温度和电子密度的空间分布起重要作用。  相似文献   

3.
大气压微等离子体射流电子密度研究   总被引:1,自引:0,他引:1  
采用微空心阴极放电装置,利用光学方法和电学方法研究了大气压流动Ar和N2混合气体中产生的微等离子体射流特性。研究发现,随着电源输入功率增大到一定数值,微空心阴极装置中两个电极间气体发生击穿,通过击穿气隙气体的流动会沿着气流方向产生最大为4 mm的等离子体射流。放电电流为准连续的脉冲放电形式,其中放电电流脉冲宽度约为0.1 μs。分别利用爱因斯坦方程和等离子体发射光谱中谱线的Stark展宽方法计算了电子密度。结果发现,2种计算方法得出的微等离子体射流的电子密度均在1015·cm-3的量级。研究还发现,功率对微等离子体射流电子密度影响不大。利用气体击穿理论,对以上结论进行了定性分析。  相似文献   

4.
等离子体喷枪是一种重要的等离子体源,已成为近几年低温等离子体研究的一个重要课题。本文利用钨针-钨丝网电极制作了直流喷枪装置,在大气压空气中产生了稳定的等离子体羽,并采用发射光谱的方法,对等离子体羽的等离子体参数进行了研究。在钨针电极与钨丝网电极之间放出耀眼的白光,钨丝网电极出口的气流下游有火苗形状的等离子体羽喷出。在电压保持不变的条件下(13.5 kV),等离子体羽长度随气体流量增加而增大;在气体流量保持不变的条件下(10 L·min-1),羽长度随外加电压的增大而增大。在气体流量一定的条件下,放电电压和放电电流呈反比例关系,即电压随着电流的增大而减小,说明放电属于辉光放电。采集了该喷枪在300~800 nm范围内的放电发射光谱,通过玻尔兹曼方法对放电等离子体电子激发温度进行了测量。结果表明,电子的激发温度随外加电压的增大而降低,随着工作气体流量的减小而升高。利用放电的基本理论对上述现象做了解释。这些研究结果对大气压均匀放电等离子体源的研制和工业应用具有重要意义。  相似文献   

5.
6.
利用同轴介质阻挡放电喷枪,通过氩气的流动在大气压空气中产生了均匀的等离子体羽。等离子体羽沿气流方向较为均匀,但在喷嘴处为白色且亮度较高,远离喷嘴处为蓝色,亮度较低。研究了等离子体羽长度与外加电压幅值、驱动频率和气体流速的关系,气流小于4 L·min-1时等离子羽的长度随气流的增大而增大,而当气流大于4 L·min-1时长度随气流的增大而减小。当气流保持恒定时,等离子体羽的长度随外加电压幅值或驱动频率的增大而增大。结合气体放电理论以及分析湍流和平流对放电的影响,对等离子体羽长度随实验参数的变化进行了定性解释。光学方法研究发现在外加电压正半周期等离子羽有一个发光脉冲,而负半周期没有发光信号。同轴介质阻挡放电正半周期有两个发光脉冲,负半周期有一个发光脉冲。通过对该N2现象的分析,为等离子体羽的产生机制提供了一种可能的解释。采集了同轴介质阻挡放电和等离子体羽的发射光谱,研究发现除等离子体羽存在明显的OH和N2的发射谱线外,其发射光谱没有明显差别。利用光学发射谱N+2第一负带系,对等离子体羽转动温度进行了测量,发现转动温度沿远离喷嘴的方向逐渐降低,且转动温度随电压幅值的增大而增大。  相似文献   

7.
分别利用电子的漂移速度和等离子体的传播速度计算了大气压下氦等离子体射流的电子密度。  相似文献   

8.
为掌握反应器结构参数和放电参数对大气压非平衡等离子体射流(N-APPJ)的射流长度的定量影响,设计了多结构的针-环式电极氩气等离子体射流装置,分别研究了放电电压、电极间隙、高压电极放电末端与接地电极的距离及氩气体积流量对射流长度的影响,并采用发生光谱法对该反应器产生的等离子体电子激发温度进行了计算。结果表明:等离子体射流的最大长度可达80 mm;高压电极放电末端与接地电极之间的距离越大,射流长度越长但不是线性增长;射流长度随电极间隙的增加呈现先增大后减小的趋势且在电极间隙为4.5 mm时该射流达到最大长度;随着氩气体积流量的增加,等离子体射流长度也呈现出先增大后减小的趋势且减小的幅度较低;电子激发温度在高压电极和接地电极处较高,两电极之间部分次之,在石英管出口处会有比较明显的下降。  相似文献   

9.
为了深入研究等离子射流阵列的放电特性,利用上升沿1μs、脉宽2μs的微秒脉冲电源产生等离子体射流,通过电压电流波形的测量和发光图像的拍摄,研究了在针-环双电极结构下,不同电极位置以及不同重复脉冲频率下氦气等离子体射流阵列的放电特性。实验结果表明放电最初产生在阵列的两端,随着外加电压幅值的增加,中心管也会有射流产生,最终形成射流阵列。随地电极距管口距离的变远,放电电流和中心管的射流长度均呈现出先增大后减小的变化趋势(20mm处取得最大值),随着重复脉冲频率的增大,放电由不均匀的丝状放电向均匀放电转变,放电电流先减小而后保持不变。  相似文献   

10.
为了深入研究等离子射流阵列的放电特性,利用上升沿1 s、脉宽2 s的微秒脉冲电源产生等离子体射流,通过电压电流波形的测量和发光图像的拍摄,研究了在针-环双电极结构下,不同电极位置以及不同重复脉冲频率下氦气等离子体射流阵列的放电特性。实验结果表明放电最初产生在阵列的两端,随着外加电压幅值的增加,中心管也会有射流产生,最终形成射流阵列。随地电极距管口距离的变远,放电电流和中心管的射流长度均呈现出先增大后减小的变化趋势(20 mm处取得最大值),随着重复脉冲频率的增大,放电由不均匀的丝状放电向均匀放电转变,放电电流先减小而后保持不变。  相似文献   

11.
利用三电极介质阻挡放电装置,在大气压空气中产生了较大体积的等离子体羽。采用光学方法对该等离子体羽的特性进行了研究。发现随着外加电压峰值增加,每个外加电压周期的放电脉冲个数增加。通过采集等离子体羽的发射光谱,空间分辨地研究了放电等离子体羽的振动温度。结果表明等离子体羽的振动温度随着外加电压峰值的增加而减小;随着远离喷嘴的距离的增加,等离子体振动温度先增加后减小,当距离喷嘴5.4 mm时振动温度达到最高值。对上述现象进行了定性分析。研究结果对大气压空气等离子体羽在杀菌消毒等领域的应用具有重要意义。  相似文献   

12.
利用光谱学方法,对针-水电极和针-板电极直流辉光放电特性进行了比较研究。结果发现两种装置产生的放电都有明显的分区现象, 从阴极到阳极分别为负辉区、阴极暗区、正柱区和阳极辉区。针-板电极放电中可以清晰地观测到阳极暗区, 而针-水电极放电阳极暗区不明显。对比两种放电的伏安特性曲线,发现放电电压均随电流增大而减小,但相同电流下针-水电极间的电压大于针-板电极间的电压。由于伏安特性具有负斜率,且放电电流密度介于10-5~10-4 A·cm-2,说明两种装置中的放电均处于正常辉光放电阶段。在正常辉光放电的范围内比较两种放电的发射光谱, 发现发射光谱中都包含N2的第二正带系(含波长为337.1 nm的谱线)和N+2的第一负带系(含波长为391.4 nm的谱线),但相对强度不同。利用光谱学方法对放电发射谱的谱线强度比I391.4I337.1和振动温度进行了空间分辨测量,发现相同位置处针-水电极放电的谱线强度比要比针-板电极放电的大,并且相同位置处针-水电极放电的振动温度高。  相似文献   

13.
大气压直流氩等离子体光谱诊断研究   总被引:13,自引:3,他引:13  
通过光谱诊断系统测量了大气压直流氩等离子体射流在弧室内和弧室出口的发射光谱,利用波尔兹曼曲线斜率法计算了射流的电子温度,根据Ar Ⅰ谱线的斯塔克展宽得到射流的电子密度,并对氩等离子体射流满足局域热力学平衡(LTE)状态的判定标准进行了分析,结果表明在文章的实验条件下大气压直流氩等离子体射流达到局域热力学平衡。  相似文献   

14.
大气压等离子体射流因其产生的等离子体羽富含活性粒子而在废水净化、元素探测、材料处理等方面具有良好的应用前景.通常等离子体羽的直径较小,限制了其工作效率.针对于此,利用交流电压激励大气压氩气等离子体射流,产生了直径约为14 m m的大尺度均匀等离子体羽.采用发射光谱法对电子密度和氧原子浓度随不同实验参数的变化关系进行了研...  相似文献   

15.
在针-针电极结构的放电装置中以环境空气作为工作气体,大气压下产生了刷形等离子体羽。尽管使用的是直流电源,但放电发光呈现出脉冲性质,发光脉冲频率几乎不受气体流速的影响,但与电源输出功率成正相关关系。等离子体羽的长度与气体流速或者电源功率成正相关关系。通道出口附近,777.4 nm的氧原子谱线强度分布是非对称的,阴极附近处的谱线强度高于阳极附近处的谱线强度。远离通道出口位置,谱线强度逐渐趋于轴对称分布。电学特性和10 μs曝光高速影像结果表明,空气等离子体羽实际上是由拱形放电丝在远离通道出口的运动过程中叠加而成,同时放电从弧光放电丝向均匀辉光放电转化。  相似文献   

16.
大气压均匀放电等离子体在工业领域具有非常广泛的应用前景,它是利用直流电源激励的空心针-板放电装置,以氩气为工作气体在大气压空气中产生均匀稳定的放电。对氩气流量和气隙间距对辉光放电发光特性的关系进行了研究,结果表明放电所产生的等离子体柱连接两个电极,发光较为均匀(观察不到放电丝)。在板电极附近放电等离子体柱直径最大,最大直径随着电流和气流的增大而增大。放电伏安特性研究发现,与低气压辉光放电相类似,两电极间的电压随着电流的增大而减小,并且随气流和气隙间距的增大而增大。对该大气压直流均匀放电在扫描范围为330~450 nm的光学发射光谱进行分析,获得了放电等离子体的分子振动温度和谱线强度比I391.4/I337.1随氩气流量和气隙间距的变化关系。I391.4/I337.1均随流量和气隙间距的增大而降低。对等离子体柱的I391.4/I337.1沿气流方向(等离子体柱轴向)进行了空间分辨测量,并进行了定性分析,结果表明,振动温度及电子平均能量随着远离空心针口距离的增大而增大。这些结果对大气压辉光放电在工业中的应用具有重要意义。  相似文献   

17.
常压射流等离子体发射光谱研究   总被引:2,自引:0,他引:2  
使用改进介质阻挡放电装置生成常压射流等离子体,采用光纤光栅光谱仪在300~1 000 nm范围记录了不同放电电压的氩气发射光谱,并比较了空气和氩气常压介质阻挡放电等离子体发射光谱,分析发现氩气发射光谱中的谱线都是氩原子的发射谱线,表明常压射流装置产生的等离子体全部为氩等离子体,而无其他空气成分参与放电。为测量电子激发温度,选用相距较近的763.51和772.42 nm两条光谱线对电子温度进行分析,结果表明电子激发温度的范围在0.1~0.3 eV,而且它还随着放电电压的增加而增加。初步使用“红外测温仪”测量被处理材料表面温度,结果发现材料表面的温度也随着放电电压的增加而增加,范围在50~100 ℃,材料表面温度的变化趋势可以近似表征等离子体宏观温度变化趋势。通过分析常压射流等离子体的温度特性,探讨了常压射流等离子体温度对材料改性研究的意义。  相似文献   

18.
脉冲等离子体推力器(pulsed plasma thruster, PPT)具有体积小、重量轻、比冲高等优点,特别适合作为执行微小卫星轨道转移、阻力补偿和姿态控制等任务的推进系统。为了深入理解PPT推力产生的机理,本文对采用具有张角的舌型极板的尾部馈送式PPT等离子体羽流开展了时空分辨光谱诊断研究。通过对光谱数据的分析发现: 等离子体羽流的主要成分为C,F,C+,F+,C2+,还含有少量的由于极板烧蚀产生的Cu+和Cu2+;等离子体在放电通道内的分布不均匀,通道中心的等离子体浓度最大,靠近阳极板的等离子浓度要明显大于靠近阴极板的等离子体浓度;在不同位置处等离子体成分也具有较大差别,F+和中性粒子主要分布在靠近阳极侧的区域;通过对各个分立谱线进行多普勒线性拟合,得到了放电通道内等离子体温度信息;以中轴线靠近工质的观测点为例,对该点在整个放电过程中不同时刻的谱线进行分析,得到了该点等离子体的具体演化过程,发现在放电的不同阶段羽流成分及各组分所占比例差别较大。  相似文献   

19.
闭式等离子体可以克服等离子体隐身技术在开放环境中等离子体难以维持及能耗过大的问题。针对等离子体隐身应用,设计了一种封闭式的等离子体发生装置,选用微秒脉冲电源,以氩气为工质气体,在低气压环境下进行了放电实验。采用发射光谱法,测量了密闭腔体内部厚度方向上的Ar谱线强度,并将碰撞-辐射模型用于分析等离子体参数的分布规律。当放电参数确定时,给定电子温度和电子密度,可通过碰撞-辐射模型计算得到2p能级上的布居分布比值,将其与从光谱数据中得到的布居分布比值进行比较,当差异值最小时,即可确定相应的等离子体参数。通过对电子温度在1~5 eV范围内的2p9和2p1能级布居分布比值进行计算,分析了碰撞-辐射模型计算可能存在的误差。实验结果表明,在厚度方向上,封闭式腔体中的等离子体电子密度达到1011 cm-3量级且呈一定的梯度分布,但变化幅度不大,其分布情况有利于等离子体隐身技术的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号