首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
基于SiPLS算法的近红外光谱检测梨可溶性固形物含量   总被引:3,自引:0,他引:3  
为了提高近红外光谱技术在梨的可溶性固形物含量(SSC)检测中的精度和稳定性,对采集的原始光谱进行标准归一化(SNV)预处理,采用联合区间偏最小二乘法(SiPLS)建立了SSC的预测模型;通过交互验证法确定了模型的主成分因子数,以预测时的相关系数(Rp)和预测均方根误差(RMSEP)作为评价指标对模型预测结果进行了分析,并与经典偏最小二乘(PLS)模型、间隔偏最小二乘(iPLS)模型进行了比较.结果表明,利用SiPLS所建的预测模型的最优组合包含21个光谱区间并联合4个子区间和15个主成分因子,其预测集的相关系数和预测均方根误差分别为0.9633和0.203;说明利用近红外光谱结合SiPLS算法可以准确、无损检测梨中可溶性固形物含量.  相似文献   

2.
提出了一种利用近红外光谱技术定量分析蜂蜜中可溶性同形物含量(SSC)的新方法,同时对蜂蜜中的水分也进行了研究.在不同光谱范围内,通过对原始光谱的不同预处理,用偏最小二乘法分别建立了SSC和水分的近红外透反射光谱校正模型,所有模型都有高的的预测精度和水分的最优模型都为在全谱范围内,光谱预处理采用Norris平滑+一阶微分+多元信号校正,SSC模型的交互验证决定系数(RCV2)、交互验证误差均方根(RMSECV)、验证集决定系数(RP2)、验证误差均方根(RMSEP).SSC模型分别为0.998 6,0.190,0.998 5和0.127,水分模型分别为0.998 4,0.187.0.998 6和0.125.近红外光谱能实现蜂蜜中SSC和水分的准确测定.水分模型预测结果略好于相关文献的报道.  相似文献   

3.
梨可溶性固形物含量的在线近红外光谱检测   总被引:11,自引:0,他引:11  
应用近红外透射检测技术在线检测梨的可溶性固形物(SSC)。在实验台上以0.5 m·s-1的速度,300 W的光照强度,采用半透射方式检测梨的光谱。实验采用的梨样品为187个,其中147个样品为校正集,40个样品为预测集,应用偏最小二乘回归(PLS)和主成分回归(PCR)建立梨可溶性固形物的在线预测模型。选取550~700 nm, 700~850 nm, 550~850 nm为建模波段范围,发现无论对于PLS还是PCR,都是550~850 nm波段的建模结果好。本实验还研究对比不同的光谱预处理方法(光谱平滑,一阶微分,二阶微分等)对预测模型性能的影响,其中5点S-G(Savitzky-Golay)光谱平滑能有效地提高光谱的信噪比,改善模型预测精度,而一阶微分、二阶微分对模型性能改善基本上没有影响;最好的预测模型相关系数r=0.948 8, 校正标准差RMSEC=0.236,预测标准差RMSEP=0.548。结果表明:PLS模型预测性能较好,梨可溶性固形物的在线检测具有可行性。  相似文献   

4.
可溶性固形物含量(SSC)是决定鲜桃风味和品质的重要成分。高光谱影像的特征提取为无损检测可溶性固形物含量提供了数据基础和方法路径。先前的研究表明,基于多光谱、荧光谱、近红外光谱、电子鼻的水果内部品质评估取得较好的结果。但是,由于缺少多特征融合,从而限制了水果品质的精准估测。为此,提出了一种基于堆栈自动编码器-粒子群优化支持向量回归(SAE-PSO-SVR)模型预测鲜桃可溶性固形物含量。首先,利用高光谱影像提取光谱信息、空间信息及空-谱融合信息。其次,设置普适性堆栈自动编码器(SAE)提取光谱信息、空间信息及空-谱融合信息的深层特征。最后,将深层特征作为粒子群优化支持向量回归(PSO-SVR)模型的输入数据进行鲜桃可溶性固形物含量的预测。其中,对于光谱信息作为输入的SAE模型,设计了453-300-200-100-40, 453-350-250-150-50, 453-350-250-100-60的三个隐含层结构。对于空间信息作为输入的SAE模型,设计了894-700-500-300-50, 894-650-350-200-80, 894-800-700-500-100的三个隐含层结构。对于融合信息作为输入的SAE模型,设计了1347-800-400-200-40, 1347-750-550-400-100, 1347-700-500-360-150的三个隐含层结构。实验结果表明,对于输入数据分别为光谱信息、空间信息及融合信息的SAE模型,结构为453-300-200-100-40, 894-800-700-500-100和1347-750-550-400-100的模型效果较好,而且基于融合信息的模型预测精度明显优于基于光谱信息或者图像信息的模型。为了验证模型的普适性,利用结构为1347-750-550-400-100的SAE模型提取融合信息的深层特征估测不同品种鲜桃的可溶性固形物含量并进行可视化。结果表明,基于结构为1237-650-310-130的SAE-PSO-SVR模型预测效果最好(R2=0.873 3, RMSE=0.645 1)。因此,所提出的SAE-PSO-SVR模型提高了鲜桃可溶性固形物含量的估计精度,为鲜桃的其他成分检测提供了技术支撑。  相似文献   

5.
为了满足果蔬品质快速安全无损检测,基于可见-近红外漫透射原理,设计了番茄专用环形光源,自行搭建了番茄可见-近红外漫透射多品质检测系统,并以可溶性固形物含量(SSC)和总糖(TS)作为内部品质指标,对58个番茄样品进行了快速无损检测研究。基于自主搭建的系统对每个番茄进行四点的光谱采集,对平均后的光谱分别用15点SG卷积平滑(SG-Smooth)、标准正态变量变换(SNV)、多元散射校正(MSC)、一阶导数(FD)等方法进行了预处理,分别建立了SSC及TS的偏最小二乘预测模型,并对该模型进行了验证。结果表明:采用15点SG平滑预处理后的SSC预测模型校正集和预测集相关系数分别为0.995 6和0.976 0,均方根误差分别为0.052 4°Brix和0.082 3°Brix。采用SG平滑后一阶导数预处理的TS预测模型校正集和预测集相关系数分别为0.969 1和0.972 9,均方根误差分别为0.423 8%和0.454 9%。模型验证结果显示,番茄SSC和TS模型预测结果与标准理化值相关系数分别为0.985 5和0.944 9,均方根误差分别为0.066 3°Brix和0.571 5%。利用自行搭建的可见-近红外漫透射光谱检测系统完全可以实现番茄可溶性固形物及总糖含量的快速无损预测,为番茄内部品质的评价提供了实时、无损、快速的检测方法,为其在线分级提供理论基础。  相似文献   

6.
近红外漫反射光谱检测赣南脐橙可溶性固形物的研究   总被引:3,自引:1,他引:3  
研究了应用可见-近红外漫反射光谱技术快速检测赣南脐橙可溶性固形物的方法。以40个赣南脐橙为标准样本,利用漫反射光谱测定法获取完整赣南脐橙的可见-近红外光光谱(350~2 500 nm),采用多种光谱校正算法,选取不同的光谱波段范围对水果样本的漫反射二阶光谱进行有效信息的提取和分析,并结合偏最小二乘法和主成分回归等定量校正方法,建立了赣南脐橙可溶性固形物的定量数学模型。实验结果为: 在361~2 488 nm波段范围内,偏最小二乘法校正模型的预测精度最好,校正模型的相关系数为0.929,校正标准偏差和预测标准偏差分别为0.517,0.592,其预测集样本的预测值与真实值的相关系数为0.791。实验结果表明:应用近红外漫反射技术对赣南脐橙可溶性固形物的快速无损检测具有可行性。  相似文献   

7.
采用高光谱成像技术结合不同的特征提取方法,实现了对草莓可溶性固形物含量的检测。通过提取154颗成熟无损伤草莓的高光谱图像的874~1 734 nm范围光谱信息,对941~1 612 nm光谱采用移动平均法(moving average,MA)进行预处理。基于残差法剔除19个异常样本后将剩余135个样本分为建模集(n=90)和预测集(n=45)。采用连续投影算法(successive projections algorithm, SPA),遗传偏最小二乘算法(genetic algorithm-partial least squares, GAPLS)结合连续投影算法(GAPLS-SPA),加权回归系数(weighted regression coefficient, Bw)以及CARS法(competitive adaptive reweighted sampling)选择特征波长分别提取14,17,24与25个特征波长,并采用主成分分析(principal component analysis, PCA)与小波变换(wavelet transform, WT)分别提取20与58个特征信息。分别基于全波段光谱、特征波长与特征信息建立PLS模型。所有模型都取得了较好的效果,基于全波段光谱的PLS模型与基于WT提取的特征信息的PLS模型的效果最优,建模集相关系数(rc)与预测集相关系数(rp)均高于0.9。结果表明高光谱成像技术结合特征提取方法可用于草莓可溶性固形物含量的检测。  相似文献   

8.
基于高光谱成像技术的滩羊肉新鲜度快速检测研究   总被引:1,自引:0,他引:1  
滩羊肉的新鲜度是其品质安全的一个重要衡量指标,也是肉品品质安全控制的关键环节。挥发性盐基氮(TVB-N)是表征肉品腐败过程主要的化学信息,能有效地评价出滩羊肉的新鲜度。然而,TVB-N的传统检测过程繁琐且人为影响因素大,检测结果缺乏客观性和一致性,不能满足当今肉品检测过程无损、快速、高效的需求。高光谱成像技术符合现代检测技术向多源信息融合方向发展的需求,已在食品安全领域得到广泛应用。利用可见/近红外高光谱成像技术(400~1 000 nm)结合动力学和化学计量学方法以及计算机编程技术,将同时实现滩羊肉贮存期内(15 ℃环境)TVB-N 浓度的快速检测和贮藏期的预测。研究中提取每个样品感兴趣区域的平均光谱数据,选用蒙特卡洛算法剔除异常样本。采用X-Y共生距离(SPXY)法划分为校正集和预测集,分别选用多元散射校正(multiplicative scatter correction, MSC)、卷积平滑(savitzky-golay, SG)、标准变量变换(standard normalized variate, SNV)、归一化(normalization)、基线校准(baseline)五种方法对原始光谱数据进行预处理,优选出最佳预处理方法。采用竞争性自适应重加权法(campetitive adaptive reweighted sampling, CARS)和连续投影算法(successive projections algorithm, SPA)分别提取了21个和6个特征波长。为优化模型并提高其模型精度,采用SPA算法对 CARS 所选特征波长进行二次提取,优选出14个特征波长。基于所提取的特征波长建立TVB-N浓度的PLSR模型,优选出 SNV-CARS-SPA-PLSR 模型具有较高的预测能力(R2c=0.88,RMSEC=2.51, R2p=0.65, RMSEP=2.11)。同时,建立了滩羊肉TVB-N变化与贮藏时间的动力学模型,并将优化后的光谱模型和动力学反应模型相结合建立了滩羊肉光谱吸光度值与贮藏时间的高光谱动力学模型,实现对贮藏时间的预测,并通过 PLS-DA判别模型对滩羊肉贮藏时间进行判别分析(校正集判别准确率为100%,预测集为97%)。研究表明,利用可见/近红外高光谱成像技术结合动力学和化学计量学方法以及计算机编程技术,可以有效地实现滩羊肉品质智能监控与质量安全快速无损分析,为开发实时在线检测装备提供理论参考。  相似文献   

9.
以高光谱数据有效预测苹果可溶性固形物含量   总被引:4,自引:0,他引:4  
从高光谱数据中选取能够有效进行内部品质检测的特征波长,是利用高光谱成像技术进行水果品质定量分析的关键。本文采用遗传算法(GA)、连续投影算法(SPA)和GA-SPA算法分别从400~1 000 nm的苹果高光谱图像中提取特征波长,利用偏最小二乘法(PLS)、最小二乘支撑向量机(LS-SVM)和多元线性回归(MLR)建模进行苹果可溶性固形物含量(SSC)的定量分析并进行了综合比较。160个样品中,120个用于建模,40个用于预测。比较发现SPA-MLR模型获得了最好的结果,R2p,RMSEP和RPD分别为0.950 1,0.308 7和4.476 6。结果表明:SPA能够有效地用于高光谱数据的变量选择,利用SPA-MLR可建立稳健的苹果SSC预测模型,较少的有效变量和MLR模型的易解释性表明该模型在在线检测和便携式仪器开发中具有较大的应用潜力。  相似文献   

10.
应用近红外高光谱成像技术预测甘蔗可溶性固形物含量   总被引:5,自引:0,他引:5  
为了探究应用近红外高光谱成像技术对甘蔗内部可溶性固形物(SSC)预测的可行性,试验样本选择三种不同品种中的240个甘蔗节作为研究对象。通过高光谱成像系统获取甘蔗节的近红外光谱信息和图像信息,并分别探讨了光谱信息和图像纹理信息对甘蔗可溶性固形物预测的可行性。采用最小二乘回归(PLSR),最小二乘支持向量机(LS-SVM)及主成分回归(PCR)建模方法构建甘蔗可溶性固形物的预测模型。比较了连续投影算法(SPA)、无信息变量消除算法(UVE)及区间偏最小二乘(iPLS)特征提取方法对预测结果的影响。实验结果表明:基于甘蔗的光谱信息能实现可溶性固形物的预测,其中偏最小二乘回归模型的建模集和预测集的相关系数分别为0.879和0.843,均方根误差分别为0.644和0.742。通过UVE算法提取105个有效波长所建立的PLSR模型的建模集及预测集相关系数分别为0.860和0.813,均方根误差分别为0.693和0.810。  相似文献   

11.
针对马铃薯损伤部位随机放置会影响检测精度的问题,提出从正对相机、背对相机及侧对相机三个方向,应用透射和反射高光谱成像技术采集马铃薯图像,进行透射和反射高光谱成像的马铃薯损伤检测比较研究。对透射和反射高光谱图像进行独立成分(IC)分析和特征提取,利用所得特征对反射图像进行二次IC分析,对透射和反射光谱进行变量选择,最终分别建立基于反射图像、反射光谱、透射光谱的马铃薯损伤定性识别模型;对识别准确率高的模型做进一步优化,采用子窗口排列分析(SPA)算法对透射光谱的特征做二次选择得到3个光谱变量,并建立任意放置的马铃薯损伤识别最优模型。试验结果表明,基于反射图像、反射光谱建立的模型识别准确率较低,其中基于反射图像的马铃薯碰伤,侧对相机识别准确率最低为43.10%;基于透射光谱信息建立的模型识别准确率较高,损伤部位正对、背对相机的识别准确率均为100%,侧对相机为99.53%;马铃薯损伤识别最优模型对任意放置的损伤识别准确率为97.39%。应用透射高光谱成像技术可以检测任意放置方向下的马铃薯损伤,该研究可为马铃薯综合品质的在线检测提供技术支持。  相似文献   

12.
粮油品质安全至关人类营养健康与生命安全。常规检测粮油品质安全方法,由于操作困难、破坏性强、费用高、试剂污染等缺点,不能满足快速无损,高效无污染的要求,难以与工业4.0接轨。整合光谱和图像手段的高光谱成像技术,伴随着化学计量学的发展,突破了常规检测方法局限性,是粮油品质安全检测技术的发展趋势。在大量文献的基础上,综述了高光谱成像技术原理,以及在品质方面(组分测定、发芽检测、品种分类)和安全方面(真菌检测、虫害检测)的研究进展,特别分析了高光谱成像技术检测粮油品质安全的应用光谱范围、化学计量学方法、仪器设备和模型准确性,指出了现阶段在粮油品质安全检测中存在的主要问题,并对今后的研究方向和重点进行了展望,以期推动高光谱成像技术在粮油领域的应用发展。  相似文献   

13.
微波消解ICP-AES法检测动物毛被中微量元素的方法研究   总被引:6,自引:1,他引:6  
针对动物毛被样品的复杂基质,对样品的预处理方法进行了专门研究,利用民用微波炉代替专业微波反应器,采用微波加热技术,利用试剂的不同特点,分别对试剂硝酸、过氧化氢、盐酸和水的配比及试液体积进行试验,对不同的反应功率和反应进行所需的时间都进行了条件试验的研究,优化实验条件,确定选择HNO3-H2O2-HCl-H2O酸溶体系,四种试剂配比为8∶1∶1∶5,输出功率360 W条件下加热5 min,进行试样密闭消解处理动物毛被样品,采用标准溶液基体匹配法消除动物毛被样品复杂的基体干扰,利用电感耦合等离子体原子发射光谱分析技术,同时检测18个动物毛被样品的常量和微量元素。该方法经国家人发标准物质GBW07601验证,测得方法相对误差在0.83%~9.59%之间,相对标准偏差在0.81%~5.20%之间,该方法的检出限、精密度和准确度各项检测指标在动物毛被实际样品分析中得到验证,均能满足生物样品检测要求。  相似文献   

14.
为改进湿法消解有机质含量偏高土壤样品的方法,通过电感耦合等离子体质谱(IC P-M S)对比了双氧水-氢氟酸-硝酸(H2 O2-HF-HNO3)、盐酸-硝酸-氢氟酸(HCl-HNO3-HF)、王水-逆王水-硝酸-氢氟酸(NO2 Cl-H2[(N3 O8)Cl]-HNO3-HF)、双氧水-盐酸-硝酸-氢氟酸(H2 O2-...  相似文献   

15.
保鲜膜能提高果蔬保水性,隔绝外界细菌侵染,延长货架期。为了准确估测覆盖保鲜膜果蔬品质的优劣,对其货架期进行预测具有重要意义。应用高光谱技术结合化学计量学方法对同等贮藏条件下覆膜新鲜菠菜叶片的货架期进行了预测。先采集五个不同贮藏时间下75盘共300片菠菜样本在可见-近红外(Vis-NIR,380~1 030 nm)与近红外(NIR,874~1 734 nm)波段的高光谱数据,然后测定不同贮藏时间下菠菜叶片叶绿素含量。提取300片覆膜菠菜叶片的平均光谱(200个为建模集,100个为预测集)后,对建模集光谱进行主成分分析(principal component analysis,PCA),发现不同贮藏期内叶片光谱数据在前3个主成分空间有一定的聚类。根据建模集光谱信息与预先赋予的不同贮藏期虚拟等级分别建立偏最小二乘判别分析(partial least squares discriminant analysis,PLS-DA)模型,得到预测集样本的贮藏期总的判别准确率分别为83%(Vis-NIR)和81%(NIR)。表明,高光谱技术结合化学计量学方法能够实现对新鲜菠菜货架期的分类和预测,为消费者正确评价覆盖保鲜膜的菠菜品质提供了理论指导,也为后期果蔬货架期检测仪器的开发提供了技术支持。  相似文献   

16.
ABSTRACT

A simple and reliable method for Cd determination in plastic materials using optimized wet acid digestion procedure and atomic absorption spectroscopy was developed. In order to obtain the best experimental conditions for plastic digestion, a 27–4 Plackett-Burman design for screening the significant factors and a 24–1 central composite design to optimize the significant experimental variables were carried out. The polyethylene European Reference Material ERM-EC680 with certified Cd content was used in both the screening and the optimization steps. The optimized experimental conditions 0.200 g of plastic material digested with 2 mL nitric acid (30 min, 130°C) followed by 1 mL sulfuric acid (30 min, 140°C). The accuracy and precision was checked using ERM-EC680. The Cd recovery was 101.3% and the relative standard deviation was 5.6%. The limit of detection obtained was 0.23 mg kg?1. The method was applied in the analysis of one PVC plastic material, several commercial packaging materials, and plastic toys.  相似文献   

17.
在烟草中的有机和生物活性成分被鉴定出来之后,分析和鉴别其中的无机元素就变得非常重要。采用电感耦合等离子体质谱法同时测定了烟叶中Be,Na,Mg,K,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,As,Se,Sr,Mo,Ag,Cd,Sn,Cs,Ba,Hg,Tl,Pb,Th和U共27种元素。样品的前处理采用硝酸和过氧化氢混合溶液。通过在线加入内标液的方法来校正由于基体效应和信号漂移对测量所造成的影响,内标选用锗、铟和铋3种元素。方法的回收率为93.64%~108.9%,检出限为0.356 3 ng·L-1~1.725 μg·L-1,相对标准偏差1.28%~9.18%。实验结果表明该方法能满足痕量分析的要求。  相似文献   

18.
Abstract

A microwave-assisted digestion procedure has been developed for the treatment of silicone oil samples. Inductively coupled plasma mass spectrometry (ICP-MS) was used to determine the concentration level of 40 trace element impurities, like Li, Na, Mg, Al, P, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Sr, Rb, Zr, Nb, Mo, Ag, Cd, Sn, Sb, Ba, La, Ce, Nd, Hf, W, Au, Pb, Hg, Th, Bi and U in these samples, having obtained average relative standard deviation values of 9.6%. The methodology developed has been tested by recovery studies on different natural samples spiked with known amounts of Mg, Cr, Mn, Fe, Zn and Pb at concentration levels of 10, 0.5, 5, 5, 10 and 1 μg g?1 and recovery percentage values varies from 97 to 105 %.  相似文献   

19.
用近红外光谱法测定甜菜粕中总糖份和水份的方法研究   总被引:5,自引:0,他引:5  
本文研究了用近红外分光光度计测定甜菜粕中总糖份和水份的分析方法,采用此方法,只需将样品粉碎、混匀、装样、扫描、数十秒就可出结果,分析结果与化学结果相符。方法快速、准确且无药品污染,精密度良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号