共查询到16条相似文献,搜索用时 78 毫秒
1.
为了给冬枣采收后成熟度分级提供理论指导,运用高光谱技术获取特征波长和计算光谱指数对其成熟度可视化分级。采集三类成熟度冬枣(未成熟果、白熟-初红果、半红-全红果)样本共336个并获取其高光谱信息,通过Savitzky-Golay(S-G)平滑对原始光谱降噪后再用Kennard-Stone(K-S)方法将样本分为训练集(226个)和测试集(110个)。选用连续投影法(SPA)和竞争性自适应重加权采样法(CARS)选择特征波长(CWs);同时从水果生理成分变化角度引入7个光谱指数(SIs)。基于SPA和CARS选取的CWs和引入的SIs分别建立偏最小二乘判别分析(PLS-DA)模型,并比较了3个模型的分级效果。结果表明:基于SPA和CARS选择的特征波长和引入的SIs建立的PLS-DA模型判别精度分别为:97.27%,95.45%和98.18%。为了直观展现判别结果,选用SIs建立的PLS-DA回归系数拟合判别向量Y的回归方程,依据Y中最大值元素所在类别为该样本预测类别的规则,将结果用不同颜色直观显示。该研究为冬枣成熟度可视化分级提供了思路,引入的SIs参数为开发适于多种水果成熟度分级的设备提供了技术支撑。 相似文献
2.
LS-SVM的梨可溶性固形物近红外光谱检测的特征波长筛选 总被引:2,自引:0,他引:2
为提高梨可溶性固形物含量(soluble solids content,SSC)的近红外光谱模型的精度和稳定性,以160个梨样品为实验对象,分别对原始光谱、多元散射校正(MSC)和标准正态变量变换(SNV)处理后的光谱,经无信息变量消除算法(UVE)挑选后,再结合遗传算法(GA)和连续投影算法(SPA),筛选梨可溶性固形物的近红外光谱特征波长。将筛选后的波长作为输入变量建立梨可溶性固形物的最小二乘支持向量机(LS-SVM)模型。结果表明经过SNV-UVE-GA-SPA从全波段3112个波长中筛选出的30个特征波长建立的梨可溶性固形物LS-SVM模型效果最好,该模型的预测集相关系数(Rp)和预测均方根误差(RMSEP)分别为0.956和0.271。该模型简单可靠,预测效果好,能满足梨的可溶性固形物含量的快速检测,为在线检测和便携式设备开发提供了理论基础。 相似文献
3.
采用荧光高光谱成像技术对脐橙表面不同浓度毒死蜱和多菌灵进行判别。实验通过由氙灯光源激发的高光谱成像系统(392~998.2 nm)分别采集浓度为0, 0.5, 1, 2mg·kg-1的毒死蜱和0, 1, 3, 5mg·kg-1多菌灵的高光谱图像。使用ENVI软件获取样本的感兴趣区域(ROI);对原始光谱数据采用卷积平滑(SG)、标准正态标量变换(SNV)及一阶导数(FD)方法进行预处理;采用区间变量迭代空间收缩法(iVISSA)、无信息变量消除算法(UVE)和竞争性自适应加权算法(CARS)进行一次提取特征波长,二维相关光谱(2D-COS)方法进行二次提取特征波长。最后采用主成分分析与线性判别分析相结合算法(PCA-LDA)和偏最小二乘算法(PLS-DA)建立基于两次提取特征波长脐橙表面不同浓度毒死蜱和多菌灵残留的判别模型。将原始光谱数据与经过预处理的3种光谱数据进行建模分析,结果发现毒死蜱和多菌灵的光谱数据经过SG处理后模型效果最优。对经SG预处理后的毒死蜱光谱数据和多菌灵光谱数据进行特征波长一次提取,最佳特征波长分别为iVISSA法和CA... 相似文献
4.
提出了一种以样品光谱类间相关系数之和最小为准则进行光谱波长逐步筛选的方法(stepwise selection basing on minimum sum of correlation coefficients, SMCC),以类间距离与类内距离和的比值最大化(符合分析者主观预期目标)作为定性分析中特征波长筛选效果的评价依据,并使用红塔集团提供的2012年17种不同类型工业分级烟叶作为试验样品,以验证筛选方法的有效性。研究表明,采用CO1分级烟叶光谱作为参照类别,筛选出10个特征波长点:采用特征波长计算得到的类内欧氏距离的平均值为采用全部波长计算得到的平均值的1.69倍,采用特征波长计算得到的类间欧氏距离的平均值为采用全部波长计算得到的平均值的3.70倍,采用特征波长计算得到的类间欧氏距离与类内欧氏距离和的比值的平均值为采用全部波长计算得到的平均值的2.21倍。特征波长的类间与类内欧氏距离和的比值增大,说明筛选出来的特征波长能更加有效的表达不同类间的远近关系以及同一类内的离散度,SMCC算法是一种有效的、可应用于近红外光谱定性分析中的特征波长筛选方法。 相似文献
5.
高光谱成像技术结合特征提取方法的草莓可溶性固形物检测研究 总被引:1,自引:0,他引:1
采用高光谱成像技术结合不同的特征提取方法,实现了对草莓可溶性固形物含量的检测。通过提取154颗成熟无损伤草莓的高光谱图像的874~1 734 nm范围光谱信息,对941~1 612 nm光谱采用移动平均法(moving average,MA)进行预处理。基于残差法剔除19个异常样本后将剩余135个样本分为建模集(n=90)和预测集(n=45)。采用连续投影算法(successive projections algorithm, SPA),遗传偏最小二乘算法(genetic algorithm-partial least squares, GAPLS)结合连续投影算法(GAPLS-SPA),加权回归系数(weighted regression coefficient, Bw)以及CARS法(competitive adaptive reweighted sampling)选择特征波长分别提取14,17,24与25个特征波长,并采用主成分分析(principal component analysis, PCA)与小波变换(wavelet transform, WT)分别提取20与58个特征信息。分别基于全波段光谱、特征波长与特征信息建立PLS模型。所有模型都取得了较好的效果,基于全波段光谱的PLS模型与基于WT提取的特征信息的PLS模型的效果最优,建模集相关系数(rc)与预测集相关系数(rp)均高于0.9。结果表明高光谱成像技术结合特征提取方法可用于草莓可溶性固形物含量的检测。 相似文献
6.
黄瓜霜霉病和斑潜蝇是制约黄瓜产业发展的严重病虫害。为实现黄瓜病虫害快速在线识别,采用高光谱成像和机器学习研究快速识别黄瓜霜霉病和斑潜蝇虫害的方法,为开发实用的基于多光谱成像的黄瓜病虫害快速识别设备奠定基础。使用高光谱成像系统采集黄瓜无症状叶片、霜霉病叶片、斑潜蝇虫害叶片的高光谱图像,在病斑区域选择若干个感兴趣区域(ROI),计算每个ROI的平均反射率数据作为叶片原始光谱数据。使用Kennard-Stone算法将光谱数据按照3∶1的比例划分为训练集和测试集。使用直接正交信号校正(DOSC)、多元散射校正(MSC)、移动窗口平均平滑(MA)3种方法对原始光谱数据进行预处理。采用空间迭代收缩法(VISSA)、竞争性自适应重加权算法(CARS)、迭代保留信息变量法(IRIV)、随机蛙跳算法(SFLA)对MA预处理后的光谱数据进行特征波长提取,分别提取出53、 20、 26、 10个特征波长。然后使用连续投影算法(SPA)分别对特征波长光谱数据进行二次降维,最终VISSA-SPA提取的特征波长为455、 536、 615和726 nm; CARS-SPA提取的特征波长为452、 501、 548... 相似文献
7.
8.
基于漫反射高光谱成像技术的哈密瓜糖度无损检测研究 总被引:4,自引:0,他引:4
利用高光谱成像系统获得网纹类哈密瓜糖度漫反射光谱信息,选择有效波段500~820 nm进行哈密瓜糖度检测建模回归分析。对比了多元散射信号修正和标准正则变换校正方法,原始光谱、一阶微分、二阶微分光谱预处理方法对建模精度的影响;采用偏最小二乘法、逐步多元线性回归和主成分回归方法对比分析了带皮哈密瓜和去皮哈密瓜糖度检测模型效果。结果表明,对原始光谱经过MSC和一阶微分光谱处理后,采用PLS和SMLR方法均可取得很好的建模效果,应用PLS法检测带皮哈密瓜糖度是可行的,其校正集相关系数(Rc)为0.861,RMSEC为0.627,预测集相关系数(Rp)为0.706,RMSEP为0.873;应用SMLR法检测去皮哈密瓜糖度效果最佳,校正集相关系数(Rc)为0.928,RMSEC为0.458,预测集相关系数(Rp)为0.818,RMSEP为0.727。研究表明,应用高光谱成像技术检测哈密瓜糖度具有可行性。 相似文献
9.
可溶性蛋白和谷胱甘肽(GSH)是羊肉重要的生理生化指标,是衡量机体抗氧化能力大小的重要因素,传统检测方法程序复杂,检测费时。为此应用可见-近红外(400~1 000 nm)高光谱成像技术实现可羊肉可溶性蛋白和还原性谷胱甘肽(GSH)含量无损、快速检测。首先,对采集的180个羊肉样本的原始光谱信息采用4种方法进行预处理,再运用竞争自适应加权算法(CARS)、区间变量迭代空间收缩算法-迭代和保留信息变量法(iVISSA-IRIV)进行特征波段的提取。同时使用灰度共生矩阵法(GLCM)提取贡献率最高的主成分图像的纹理信息。最后将优选出的预处理方法和特征波长信息作为光谱信息和光谱-纹理融合信息分别结合多元线性回归(MLR)、最小二乘支持向量机(LS-SVM)模型建立羊肉可溶性蛋白和谷胱甘肽含量的预测模型。结果显示未经预处理的原始光谱建立的羊肉可溶性蛋白含量PLSR模型效果最佳,其Rc和Rp分别为0.875 7和0.854 7;采用SNV法预处理后光谱建立的羊肉GSH含量PLSR模型效果最佳,其Rc和Rp分别为0.804 8和0.826 5。利用iVISSA-IRIV共筛选出31个特征波长,建立的羊肉可溶性蛋白LS-SVM模型的Rc和Rp最优,分别为0.914 6和0.881 8;同时利用iVISSA-IRIV筛选出29个特征波长,建立的羊肉GSH-MLR模型的Rc和Rp最优,分别为0.844 6和0.870 5。最终经光谱特征信息和图谱信息融合模型对比发现,建立iVISSA-IRIV-LS-SVM模型对羊肉可溶性蛋白预测效果最佳,其Rc和Rp分别为0.914 6和0.881 8;利用SNV-iVISSA-IRIV法提取的光谱特征信息与纹理信息融合建立的MLR模型为预测羊肉GSH含量的最优模型,其Rc和Rp分别为0.849 5和0.890 4。利用最优iVISSA-IRIV-LS-SVM和iVISSA-IRIV-MLR模型和成像处理方法,结合伪色彩图像直观的表示羊肉样本的可溶性蛋白和GSH含量的空间分布情况。研究结果表明利用高光谱图像的光谱和纹理信息能够用来预测羊肉可溶性蛋白和GSH含量。 相似文献
10.
应用近红外高光谱成像技术预测甘蔗可溶性固形物含量 总被引:5,自引:0,他引:5
为了探究应用近红外高光谱成像技术对甘蔗内部可溶性固形物(SSC)预测的可行性,试验样本选择三种不同品种中的240个甘蔗节作为研究对象。通过高光谱成像系统获取甘蔗节的近红外光谱信息和图像信息,并分别探讨了光谱信息和图像纹理信息对甘蔗可溶性固形物预测的可行性。采用最小二乘回归(PLSR),最小二乘支持向量机(LS-SVM)及主成分回归(PCR)建模方法构建甘蔗可溶性固形物的预测模型。比较了连续投影算法(SPA)、无信息变量消除算法(UVE)及区间偏最小二乘(iPLS)特征提取方法对预测结果的影响。实验结果表明:基于甘蔗的光谱信息能实现可溶性固形物的预测,其中偏最小二乘回归模型的建模集和预测集的相关系数分别为0.879和0.843,均方根误差分别为0.644和0.742。通过UVE算法提取105个有效波长所建立的PLSR模型的建模集及预测集相关系数分别为0.860和0.813,均方根误差分别为0.693和0.810。 相似文献
12.
外部缺陷以及内部可溶性固形物的含量对提升鲜枣的采后附加值和鲜枣后续生产加工具有重要的意义,因此,为了实现同时对鲜枣内外部品质进行快速、准确识别,利用高光谱成像技术(450-1,000 nm)对壶瓶枣的“自然损伤”和可溶性固形物含量同时进行检测研究。首先,对光谱数据进行主成分分析(PCA)得到前7个主成分光谱值,对图像数据采用灰度共生矩阵(GLCM)提取到7项图像纹理指标(对比度、相关性、能量、同质性、方差、均值、熵)。然后,分别使用光谱主成分值、图像纹理特征值、以及主成分与纹理特征融合值建立偏最小二乘支持向量机(LS-SVM)模型对壶瓶枣的外部缺陷(“自然损伤”)和内部品质(可溶性固形物含量)进行检测研究。结果表明:使用主成分与纹理特征融合值建立的LS-SVM模型可作为通用模型同时对壶瓶枣内外部品质进行检测研究,其“自然损伤”判别正确率为92.5%,可溶性固形物预测集的预测相关系数(Rp)和预测均方根误差(RMSEP)分别达到了0.944和0.495。表明,采用高光谱成像技术可以建立通用模型同时对壶瓶枣的内外部品质进行检测,该研究为壶瓶枣的无损检测提供了理论参考。 相似文献
13.
不同波长提取方法的高光谱成像技术检测番茄叶片早疫病的研究 总被引:1,自引:0,他引:1
提出了基于连续投影算法(successive projections algorithm,SPA)、载荷系数法(x-loading weights,x-LW)和格拉姆-施密特正交(gram-schmidt orthogonalization,GSO)提取特征波长的高光谱成像技术检测番茄叶片早疫病的方法。首先获取380~1 023 nm波段范围内70个健康和70个染病番茄叶片的高光谱图像信息,然后提取健康和染病叶片感兴趣区域(region of interest, ROI)的光谱反射率值,建立番茄叶片早疫病的最小二乘-支持向量机(least squares-support vector machine,LS-SVM)鉴别模型,建模集和预测集的鉴别率都是100%。再通过SPA 、x-LW和GSO提取特征波长(effective wavelengths,EW),并建立EW-LS-SVM和特征波长-线性判别分析(ew-linear discriminant analysis,EW-LDA)鉴别模型。结果显示,每个模型的鉴别效果都很好,EW-LS-SVM模型中预测集的鉴别率都达到了100%,EW-LDA模型中预测集的鉴别率分别是100%, 100%和97.83%。基于SPA, x-LW和GSO所建模型的输入变量分别是4个(492,550,633和680nm),3个(631,719和747 nm)和2个(533和657 nm),较少的特征波长便于实时检测仪器的开发。结果表明,高光谱成像技术检测番茄叶片早疫病是可行的,SPA,x-LW和GSO都是非常有效的特征波长提取方法。 相似文献
14.
以高光谱数据有效预测苹果可溶性固形物含量 总被引:4,自引:0,他引:4
从高光谱数据中选取能够有效进行内部品质检测的特征波长,是利用高光谱成像技术进行水果品质定量分析的关键。本文采用遗传算法(GA)、连续投影算法(SPA)和GA-SPA算法分别从400~1 000 nm的苹果高光谱图像中提取特征波长,利用偏最小二乘法(PLS)、最小二乘支撑向量机(LS-SVM)和多元线性回归(MLR)建模进行苹果可溶性固形物含量(SSC)的定量分析并进行了综合比较。160个样品中,120个用于建模,40个用于预测。比较发现SPA-MLR模型获得了最好的结果,R2p,RMSEP和RPD分别为0.950 1,0.308 7和4.476 6。结果表明:SPA能够有效地用于高光谱数据的变量选择,利用SPA-MLR可建立稳健的苹果SSC预测模型,较少的有效变量和MLR模型的易解释性表明该模型在在线检测和便携式仪器开发中具有较大的应用潜力。 相似文献
15.
高光谱成像技术被广泛应用于农产品的检测。基于高光谱成像技术结合机器学习算法无损鉴别不同地区的小米样本。将来源7个省份共计23份样品的小米样本根据地理区域划分为东北地区、河北、陕西、山东和山西共5大类,其中东北地区共6份样品,山西地区5份样品,河北、陕西和山东各4份样品。将每份样品均分为10等份并利用高光谱成像仪采集900~1 700 nm波段内小米的高光谱数据。为了减少光照不均匀和暗电流对实验的影响,对采集到的高光谱数据进行黑白校正。利用ENVI软件选取小米高光谱图像的感兴趣区域(ROI),每份小米样品选取9个ROI。计算ROI内的平均光谱值,以此平均值作为该样本的一条光谱记录,最后共收集到2 070条光谱曲线,其中东北类540条,山西类450条,其他河北类、山东类、陕西类各360条。为了减少样品表面的不平整性引起的散射现象,进而影响小米的真实光谱信息,对收集到的原始光谱进行多元散射校正预处理(MSC)。采用随机划分法对校正过后的光谱数据划分训练集和测试集,测试集占的比例为0.3。利用线性判别分析(LDA)对不同产地小米的光谱数据进行可视化分析,将测试集代入训练好的LDA模型,做出预测结果的混淆矩阵(Confusion Matrix),结果表明LDA对于陕西和山西类的预测准确率为0.84和0.99,对于东北、河北和山东的预测准确率仅为0.68,0.68和0.40。进而采用递归特征消除(RFE)对小米的光谱信息进行特征选择,去除冗余的信息,提高模型的预测准确率。将RFE分别与支持向量机(SVM)和逻辑回归(LR)结合,对不同产地小米的判别进行对比分析。将小米光谱数据的训练集分别代入SVM-RFE和LR-RFE模型并结合3折交叉验证技术,以模型F值的微平均(Micro-averaging)最优选择出相应的特征子集。结果表明,LR-RFE选择的波长数为74个,其模型的Micro_F为0.59;SVM-RFE选择的波长数为220,其模型的Micro_F为0.66。将选择后的特征子集应用到测试集并将测试集分别代入SVM和LR模型,采用模型预测结果的混淆矩阵和模型的受试者工作特征曲线(ROC)作为评价方法。结果表明SVM-RFE对东北地区、河北、陕西、山东和山西的预测准确率分别为1,0.37,0.72,0和1,其ROC曲线下面积(AUC)分别为0.82,0.92,0.93,0.70和0.99。LR-RFE的预测准确率分别为0.92,0,0.97,0和0.80,其AUC分别为0.72,0.74,0.94,0.66和0.88。从预测结果可以看出SVM-RFE模型的综合分类性能优于LR-RFE,而对陕西类的判别LR-RFE要优于SVM-RFE,对于河北类和山东类两个模型都不能有效判别。这两个模型的预测准确率相比LDA有了一定的提升。 相似文献
16.
高光谱图像和叶绿素含量的水稻纹枯病早期检测识别 总被引:1,自引:0,他引:1
基于高光谱成像技术和化学计量方法,实现了对水稻纹枯病病害的早期检测识别。以幼苗时期的水稻植株为研究对象,对其进行纹枯病病菌侵染,获得染病植株,采集358~1 021 nm波段范围的高光谱图像,三次实验共240个样本,包括染病植株120个样本和健康植株120个样本。根据高光谱图像的光谱维,对染病水稻叶片和健康水稻叶片提取感兴趣区域(ROI),利用感兴趣区域的光谱数据,对其进行Savitzky-Golay(SG)平滑、Savitzky-Golay(SG)一阶求导、Savitzky-Golay(SG)二阶求导、变量标准化(SNV)和多元散射校正(MSC)预处理,建立线性判别分析(LDA)和支持向量机(SVM)分类模型,结果表明:采用SG二阶求导预处理后的线性判别分析(LDA)模型取得了较好的性能,正确识别率在建模集达98.3%,在预测集达95%;利用载荷系数法(x-loading weights, x-LW)对原始光谱和5种预处理的光谱数据进行特征波长提取,然后根据选取的特征波长建立线性判别分析(LDA)和支持向量机(SVM)分类模型,其中采用SG二阶求导预处理后提取的12个特征波长的线性判别分析(LDA)模型取得了较好的性能,其正确识别率在建模集达97.8%,在预测集达95%,而且基于载荷系数法建立的模型性能与全波段相当,可以通过载荷系数法减少数据量对水稻纹枯病病害进行识别;根据高光谱图像的图像维,研究了基于图像主成分分析、基于概率滤波和基于二阶概率滤波的图像特征提取方法,利用提取的特征变量建立反向传播神经网络(BPNN)和支持向量机(SVM)分类模型,其中基于图像主成分分析的反向传播神经网络(BPNN)模型取得了较好的性能,建模集准确识别率达90.6%,预测集的准确识别率达83.3%;根据高光谱图像光谱维和图像维的最优模型,特将叶绿素含量作为建模的另一个特征,分别与光谱特征、图像特征组合,建立反向传播神经网络(BPNN)和线性判别分析(LDA)模型,提出基于光谱特征加叶绿素含量、图像特征加叶绿素含量和光谱、图像特征加叶绿素含量三种组合方式,其中,光谱特征和图像特征分别与叶绿素组合的方式比之前单独的光谱和图像特征建模性能都有所提升,而且三种组合方式中光谱特征加叶绿素含量的反向传播神经网络(BPNN)建模方式取得本研究所有建模方式中较优的性能,其准确识别率在建模集达100%,在预测集达96.7%。以上研究表明,基于高光谱图像和叶绿素含量对水稻纹枯病病害进行早期识别是可行的,为水稻病害的早期识别提供了一种新方法。 相似文献