首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
重金属污染一直影响着人们的健康生活,如镉,铅和铜等的污染,故而土壤重金属的快速检测和如何预防,一直受各国学者关注和研究。传统土壤重金属检测方法(如原子吸收光谱法、X荧光光谱法等)样品预处理复杂,分析成本较高,易形成样品的二次污染,不能满足快速分析的要求。激光诱导击穿光谱(LIBS)是一种典型的原子发射光谱,它是基于分析物质中原子和离子受激发而发射的特征谱线信息,进而研究物质成分的分析方法。LIBS技术能够快速检测任何状态(固、液和气态)物质元素的成分和含量,被看作是未来化学检测和快速绿色分析领域的新兴技术。LIBS技术具有对样本简单预处理(或不需要处理)、多元素同步分析、远距离测量、适用性广等优势,被广泛用于生活生产的各个领域,已成为近年来国内外学者广泛关注和研究的热点之一。在农业信息快速感知的大背景下,以激光诱导击穿光谱技术为技术手段,以土壤重金属铅元素为研究对象,运用理论分析和数学建模相结合,建立了多种基于单变量定标曲线的土壤重金属铅检测模型,并进行了模型验证。自制15个已知的铅元素浓度梯度的谱线土壤样本,在获取了土壤LIBS数据之后,对其进行预处理对比,建立了基于谱峰强度、谱峰积分、洛伦兹拟合强度三种定标曲线模型,对土壤中铅元素含量进行定量分析,得出基于三种定标曲线模型对土壤中铅元素含量的预测决定系数R2分别为0.918 0,0.910 1和0.914 3,三种定标曲线分析方法的预测结果都较好,说明了LIBS结合单变量定标曲线法对土壤中铅含量的检测可靠性高。最后选取部分样本数据进行验证,结果较好。研究结果为研发便携式农田土壤污染物检测技术与装备提供技术支撑,也为农田精准管理和科学施肥奠定基础。  相似文献   

2.
作为一种主要的大气污染物,挥发性有机物(VOCs)因其对大气环境极强的破坏性和生理毒性而受到广泛的关注,在线探测大气中挥发性有机物是一个极具挑战性的工作.将激光诱导击穿光谱(L IBS)与Ra-man光谱相结合,分别从原子发射光谱及分子结构信息角度对挥发性有机物进行了分析.在线原位检测得到的LIBS光谱观测到了Br元素...  相似文献   

3.
基于LIBS煤中碳元素定量分析研究   总被引:1,自引:0,他引:1  
详细介绍利用激光诱导击穿光谱(laser-induced breakdown spectroscopy,LIBS)进行煤中碳(C)元素含量定量分析的技术和手段。通过对光谱数据进行积分、归一化、筛选等处理,克服了由于激光源能量起伏、自吸收及样品表面粗糙度等因素引起分析精度差的缺点。该方法已应用到激光煤质在线分析仪中并取得了满意的分析结果,对煤粉中C元素含量分析的标准偏差不大于1.6%,其方法同样可用于煤中其他元素的分析。  相似文献   

4.
采用正交几何配置的双波长双脉冲激光烧蚀-激光诱导击穿光谱技术准确测量了铝合金样品的激光烧蚀阈值。在烧蚀激光波长为532 nm、脉宽为12 ns并采用焦距为2 cm的非球面透镜强聚焦的条件下,得到铝合金的激光能量烧蚀阈值为48 J,等效的能量密度烧蚀阈值为9.8 J/cm2。该技术是一种新的激光烧蚀阈值的光谱测量手段,与传统的测量技术相比,具有高灵敏、准确、快捷和便利的特点,可以用于不同材料的激光烧蚀阈值的准确测量。  相似文献   

5.
用激光诱导击穿光谱测量铝合金的激光烧蚀阈值   总被引:1,自引:0,他引:1       下载免费PDF全文
采用正交几何配置的双波长双脉冲激光烧蚀-激光诱导击穿光谱技术准确测量了铝合金样品的激光烧蚀阈值。在烧蚀激光波长为532 nm、脉宽为12 ns并采用焦距为2 cm的非球面透镜强聚焦的条件下,得到铝合金的激光能量烧蚀阈值为48 J,等效的能量密度烧蚀阈值为9.8 J/cm2。该技术是一种新的激光烧蚀阈值的光谱测量手段,与传统的测量技术相比,具有高灵敏、准确、快捷和便利的特点,可以用于不同材料的激光烧蚀阈值的准确测量。  相似文献   

6.
针对钢铁合金样品中存在基体效应复杂的问题,通过优化支持向量机模型的输入特征,建立多元素变量的定量分析模型,预测钢铁合金样品中Cr和Ni元素的含量。研究结果表明,分别以特征谱线的峰值强度和积分强度作为支持向量机模型的输入时,积分强度因为包含了谱线的谱宽和形状信息,模型训练效果较好;相比于单一元素谱线的特征信息,采用多元素的多条谱线信息输入支持向量机模型时,模型训练效果较好,这是由于多种谱线信息的输入可以有效校正基体效应的影响。在此基础上,通过归一化变量将内标法与多变量定标方法有效结合,不仅可以减小实验测量误差还能有效校正基体效应的影响,而且有效提高了模型的重复率和准确率。归一化变量作为支持向量机模型的输入变量,对待测样品S1和S2中Cr元素含量预测的相对误差为6.58%和1.12%,对Ni元素浓度预测的相对误差为13.4%和4.71%。通过归一化变量将内标法与多变量定标方法有效结合,可以充分发挥SVM算法的非线性学习优势,为LIBS技术应用于复杂样品定量定标分析提供理论基础。  相似文献   

7.
钢液中多元素的LIBS实时定量分析   总被引:3,自引:0,他引:3  
将激光诱导击穿光谱(LIBS)技术直接应用于钢液成分的检测.研究结果表明,氩气作为保护气不仅可以避免钢液表面的氧化,同时可以增强等离子体信号强度.在氩气氛围下,钢液表面被聚焦成高功率密度的脉冲激光击穿形成等离子体,利用耦合CCD的多通道光纤光谱仪探测等离子体在冷却过程中发射的光谱信号,得到钢液组分的相关信息.根据分析谱线选取原则,确定了主要合金元素Mn,Si和Cr的特征谱线,并建立了相应元素的定标曲线,曲线的线性拟合度均在0.925以上,对应的质量浓度检测限分别为75.7,23.8和724.5 μg·g-1.  相似文献   

8.
基于LIBS技术的钢铁合金中元素多变量定量分析方法研究   总被引:2,自引:0,他引:2  
针对钢铁合金样品元素组成相对复杂,基体效应较严重的问题,利用激光诱导击穿(LIBS)光谱技术对钢铁合金中的元素进行了定量分析。以Nd∶YAG脉冲激光器基频1 064 nm波长激光作为激发光源,采用中阶梯光栅光谱仪和ICCD分光探测钢铁合金样品的LIBS光谱。通过优化实验确定最佳探测延时为1.5 μs,最佳探测门宽为2 μs,激光聚焦点位置在实验样品靶面以下1.5 mm。采用单变量定量分析、多变量线性回归和偏最小二乘(PLS)三种方法分析钢铁合金中Cr元素和Ni元素的含量。结果表明,采用单变量定标方法定标曲线相关系数不高,对待测样的预测误差相对较大,难以有效地定量分析基体元素复杂的钢铁合金中金属元素的含量;采用多变量线性回归分析方法能有效提高定量分析的精度;采用PLS方法得到的Cr和Ni元素的拟合曲线相关系数r分别为0.981和0.995,对两个待测样品中Cr元素和Ni元素的预测相对误差在6.4%和7.1%以内,分析结果优于多变量线性回归方法。可见,采用多变量校正的PLS方法能更有效地校正基体效应对定量分析的影响,提高定量分析的精度。  相似文献   

9.
激光诱导击穿光谱(LIBS)对固体进行检测时,受固体的表面物理形态和化学特性影响较大,因此,基体效应分析对LIBS在线检测研究有重要的意义。为了提高LIBS对表面凹凸不平样品成分在线检测的准确度,进行了LIBS对不同颗粒度铁屑样品的定量分析。实验所用的9种铁屑样品性状为松散的粉末、颗粒或长条状,为防止激光与样品相互作用时发生飞溅,将样品粘到双面胶上进行固定。采用的激发波长为1 064 nm、脉冲能量为35 mJ,探测器延时和积分门宽分别设置为1和10μs。为评估样品颗粒度不同导致的基体效应对LIBS光谱的影响,首先,利用主成分分析(PCA)对系列样品进行分类,结果显示,粉末状的四个样品被分出,即颗粒度不同导致的基体效应是样品光谱信号差异的主要原因。其次,以C3、 C5两个样品研磨前后的基体元素特征谱线FeⅠ330.635 nm为研究对象,通过对比谱线的强度和相对标准偏差(RSD)发现,颗粒度越小,谱线强度越大,稳定性越好。为校正LIBS光谱基体效应的干扰,采用了样品研磨预处理和光谱数据预处理两种方法。将细长条状的C3和C5两个样品进行研磨,研磨后谱线的强度和稳定性有较大提升;分别研究了强度归一化、多元散射校正(MSC)以及两者结合对光谱进行处理的效果,三种光谱预处理均使谱线的稳定性得到显著提高。通过支持向量机(SVM)对Cu元素的定量结果进行了评估和对比,结果发现,采用研磨样品并结合强度归一化与MSC预处理得到的校正效果最优,最终使S1和S2两个待测样品的Cu元素预测相对误差(RE)分别降为1.745%和1.857%,预测均方根误差(RMSEP)降为0.020。该研究可为表面凹凸不平样品的LIBS检测提供一定的方法依据和参考。  相似文献   

10.
化石的研究可帮助科学家了解生物的演化进程,并帮助地质学家确定地层年代等地质信息,其中不同年代地层地质元素的变化是地质研究的热门课题。为研究不同年代地层地质元素的变化,搭建了一套微区LIBS实验系统,研究菊石化石中Ca元素的分布情况。采用非对称最小二乘法去除光谱数据的基线,并确定了最优的拟合参数。采用平均值归一化算法以减小光谱强度的相对标准偏差,多元线性回归算法计算模型的回归方程。首先,通过前期实验确定微区LIBS实验系统的最佳测试参数:激光波长为1 064 nm,激光脉冲频率为30 Hz,光谱仪采集延时为700 ns。其次,选取12块经过定量标定的天然岩石样品,从中随机抽取9块样品(闪长岩、闪长玢岩、辉长辉绿岩、粗玄岩、碱长粗面岩、角闪闪长岩、黑色浮岩、斑状角闪石花岗岩、玄武玻璃)作为测试集,其余3块样品(辉石闪长岩、辉石岩、斜长花岗岩)作为预测集。选取Ca Ⅱ 393.186 nm,Ca Ⅰ 422.856 nm,Ca Ⅰ 445.572 nm,Ca Ⅱ 559.031 nm,Ca Ⅰ 616.61 nm五个特征峰的谱线强度作为自变量,测试样品的实际Ca元素含量为因变量,利用多元线性回归算法建立Ca元素的定量分析模型,经预测集检验后得平均预测精度为92.9%。对表面经打磨的菊石化石进行5×5点阵扫描,得到一系列原子光谱数据。根据Ca元素的定量分析模型,计算后得到菊石化石Ca元素的横向分布图,其横向分辨率优于100 μm。作为纵向对比,选取每个测试点的第6,11和16组光谱数据进行处理,分别得到Ca元素的横向分布图。对比可以得到菊石化石Ca元素的纵向分布情况,结果表明菊石化石在平面和空间内均呈现不均匀分布的状态, 推测实验所选取的菊石化石在形成的过程中所处周围地层地质的元素及其含量是动态变化的。菊石化石不仅可以作为判定地层年代的证据,还可以通过对菊石化石的元素分布及含量的研究推测该化石所处地层的元素信息。研究工作对于浅海地层地质的演变、环境的变化具有一定指导意义。  相似文献   

11.
激光诱导击穿光谱技术(LIBS)是一种被广泛使用的物质元素检测技术。由于它的探测结果受多种因素的影响,因此,分析比较不同实验条件对LIBS光谱测量的影响对LIBS检测有着重要的意义。通过采用四川省北川县中联水泥有限公司生产的42.5普通硅酸盐水泥制成的水泥压片,利用八通道光纤光谱仪AvaSpec-2048-USB2-RM、延时触发器DG645进行了LIBS检测。针对影响水泥几种重要技术指标的金属元素Mg,Al,Na,K进行了分析。主要对比了激光频率、同一点测量次数对不同金属元素光谱信号强度的影响,得出在本实验条件下的最佳实验参数:10 Hz为最佳激光频率,激光频率为10 Hz时元素Mg,Al,Na,K所得到的光谱强度比8 Hz时分别提高了67.66%,47.88%,84.59%,43.36%。由于压片样品在放置过程中,表面会有少量的氧化、潮解, 在以测量10次求一次平均所得结果进行记录的条件下,以第三、四次记录结果为最佳。  相似文献   

12.
理论分析激光诱导击穿光谱(LIBS)的特性,研究谱线信噪比随激光能量和样品属性变化的规律,对土壤样品中的微量Cu元素进行实验测量有重要意义。实验采用的烧蚀激光波长为1 064 nm,脉冲宽度约10 ns,重复率为1 Hz。实验证实背景热辐射和元素特征辐射具有不同的空间变化规律,通过在空间上将两者分离获得较高的信噪比。当激光脉冲能量为40 mJ时,实验采用的土壤样品的最佳测量位置为距离火花中心0.75 mm处,选取Cu 324.75 nm和Cu 327.39 nm作为分析线,对含微量Cu元素土壤样品进行测量。采用内标法对测量结果进行定量分析,得到土壤中Cu元素的检测限可达到67 mg·kg-1,满足国家土壤环境质量标准规定的二级土壤中Cu含量的要求。实验结果表明选择最佳光谱测量位置的方法能够有效提高信噪比,满足土壤中微量Cu污染检测的需求。  相似文献   

13.
采用激光诱导击穿光谱技术探测等离子体温度   总被引:1,自引:0,他引:1  
阐述了激光诱导击穿技术的基本原理,研究了激光诱导击穿光谱技术在探测等离子体温度方面的应用,并进行了实验研究。在等离子体达到局部热平衡时,通过探测Cu的等离子体特征谱线相对强度的方法,达到用激光诱导击穿光谱技术探测等离子体温度的目的。实验结果表明,该方法方便、快捷,具有一定的实际应用价值。  相似文献   

14.
利用激光诱导击穿光谱(LIBS)技术对大豆油中的重金属Cr进行检测研究。以松木木片对重金属Cr进行富集,采用AvaSpec双通道高精度光谱仪在206.28~481.77 nm波段范围内采集松木木片样本的LIBS光谱,利用无信息变量消除(UVE)方法筛选与重金属Cr相关的波长变量,应用偏最小二乘(PLS)回归建立大豆油中重金属Cr的定标模型,并与单变量及全波段PLS定标模型进行比较。结果表明,相比单变量及全波段PLS定标模型,UVE-PLS定标模型的性能更优,其相关系数、校正均方根误差、交互验证均方根误差及预测均方根误差分别为0.990,0.045,0.050及0.054 mg·g-1。经UVE变量筛选后,UVE-PLS定标模型所用的波长变量数仅为全波段PLS的2%。由此可见,UVE是一种有效的波长变量筛选方法,能有效筛选出与重金属Cr相关的波长变量。  相似文献   

15.
利用激光诱导击穿光谱技术对混合溶液中的Cu,Mg,Zn和Cd四种重金属元素进行实验测量,实验中采用波长为1 064 nm,脉宽10 ns,重频10 Hz的激光器。在蒸馏水中加入CuSO4,Mg(NO3)2,Zn(NO3)2和Cd(NO3)2四种溶质,配置7种不同Cu,Mg,Zn和Cd浓度的混合溶液,采用统计探索性数据分析方法处理LIBS实验数据,得到水溶液中Cu,Mg,Zn和Cd元素的定标曲线,拟合度系数R2均大于0.99,计算出Cu,Mg,Zn和Cd四种元素的检测限分别为5.62,4.71,13.67和4.43 ppm,单一溶质CuSO4溶液中的Cu元素的LOD值为3.98 ppm。最后对单一溶质和四种溶质的LIBS检测结果差异进行了分析。研究结果表明激光诱导击穿光谱技术在环境水污染多种重金属元素检测方面具有潜在的应用前景。  相似文献   

16.
在煤和生物质燃烧过程中,燃料中的碱金属元素会发生气态释放,并在随烟气降温的过程中凝结,产生热力设备结渣、腐蚀、积灰等问题,影响设备的安全运行。激光诱导击穿光谱(LIBS)技术是测量煤/生物质火焰中碱金属元素分布的有效手段。建立了一套火焰场内K元素的LIBS测量系统,分别测量了不同ICCD门宽时间条件下火焰场内K元素的火焰发射光谱(FES)信号和LIBS信号,并计算、比较了二者的信号强度随测量系统ICCD门宽时间变化的规律。实验结果表明,相同ICCD门宽时间条件下,火焰场内K元素LIBS信号强度显著高于FES信号强度。随着ICCD门宽时间的增加,二者的信号强度均逐步增加,但是二者的增速变化规律并不相同:K元素LIBS信号强度的增加速度呈现出先快后慢的变化规律;K元素FES信号强度则呈现出线性增加的规律。同时,相同ICCD门宽时间条件下,K元素LIBS信号强度与FES信号强度的比值在ICCD门宽时间为0~8μs的范围内迅速升高至约4;之后,随着ICCD门宽时间的增加,该比值缓慢下降并逐步趋近于1。通过分析火焰场内K元素FES对LIBS测量影响的原理,提出了合理选取LIBS测量系统ICCD门宽时间,使得K元素LIBS信号强度与FES信号强度的比值最大化,从而降低K元素FES对LIBS测量影响,优化了提高火焰场内K元素LIBS信号测量准确度的方法。  相似文献   

17.
为定量分析水泥中的铜(Cu)元素,根据激光诱导击穿光谱分析方法(Ll BS)的特点,建立了激光诱导击穿光谱分析系统。采用标准加入法为定标方法,制备了5个不同含铜量的水泥样品。根据LIBS谱图,以213.598 nm和219.958 nm作为分析线。应用Savitzky-Golary卷积平滑方法对光谱数据进行了预处理,比较了Guass、Lorentz和Voigt拟合方法对光谱曲线的拟合效果。对测量结果采用一元线性拟合建立了相应的定标曲线,213.598 nm和219.958 nm定标曲线的校正决定系数分别为0.994 8和0.986 4,平均相对误差分别为3.20%和5.78%。实验结果表明:213.598 nm作为分析线的准确度优于219.958 nm分析线,该方法能够满足水泥中Cu元素定量分析的要求。  相似文献   

18.
采用激光诱导击穿光谱对铁(Fe)合金中的钛元素(Ti)的含量进行测量。实验中激光器在最大能量输出(50 mJ),延时为1 μs时光谱信号的强度值最大。在此条件下,分别使用传统定标法和Fe Ⅰ 438.35 nm及Fe Ⅰ 427.12 nm两条谱线的内标法对铁合金中的Ti进行定量分析。内标法得到的拟合相关系数(r)分别为0.997 8和0.993 9,优于传统法得到的r(0.956 3)。提出了一种双谱线平均内标法,拟合得出r为0.998 4。同时,在浓度为0.063%~1.9%的范围内传统定标法测量的相对误差为23.7%,内标法的相对误差为6.0%,采用平均内标法后相对误差降为3.9%。最后,通过测量的Ti光谱计算了激光能量为50 mJ时所产生的等离子体温度为6 654.3 K,电子密度为1.072×1022 cm-3,并讨论了激光能量与烧蚀产生等离子体温度之间的关系。  相似文献   

19.
诱导击穿光谱技术(LIBS)具有实时快速、多元素同时探测的优势,并且无需样品预处理,检测成本低,是土壤重金属定量分析检测的一种重要分析手段。将LIBS技术应用于冶炼厂区周围土壤中重金属的含量分布分析研究,利用Cu,Pb和Cr三种元素的特征谱线强度分析了冶炼厂区周围土壤中Cu,Pb和Cr三种元素的含量分布。实验结果表明冶炼厂区土壤LIBS光谱中Cu和Pb两种元素的特征谱线强度分布与实际含量分布呈较好的线性关系,而Cr元素的特征谱线强度分布与实际含量分布相关性较差。为了提高Cr元素含量分布分析的准确性,利用CF-LIBS结合Saha方程应用于土壤Cr元素的含量分布分析中。实验结果表明基于CF-LIBS计算的Cr和Si两种元素含量比值分布与土壤Cr元素的实际含量分布之间具有良好的一致性。相比于其他的化学分析方法,LIBS技术结合CF-LIBS可以快速的对区域土壤重金属元素的含量分布进行检测,因此将LIBS技术与CF-LIBS相结合用于土壤重金属的含量分布检测中,为污染区域的重金属防治提供方向。  相似文献   

20.
农田土壤中钾元素的实时测量具有重要的意义。利用由1 064 nm激光器、高分辨率光谱仪组成的激光诱导击穿光谱系统,研究了土壤总钾含量的LIBS测量方法。文章对钾元素含量在8.74~34.56 g·kg-1之间的农田土壤样品进行分析,比较了404.40,404.72,766.49和769.90 nm的钾原子特征谱线,并选取766.49 nm为本研究的分析谱线。分析了激光器稳定性、随机噪声造成的谱线强度误差,并以农田土壤中含量相对稳定的硅元素为参照元素,建立K和Si光谱强度比值与土壤中K元素含量关系的内定标模型。定标曲线拟合相关系数为0.935,定标模型对预测集样品的预测标准偏差为9.26%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号