共查询到17条相似文献,搜索用时 109 毫秒
1.
基于高光谱成像技术的长枣不同保藏温度的可溶性固形物含量检测方法 总被引:3,自引:2,他引:1
应用高光谱成像技术对不同保藏温度的灵武长枣的可溶性固形物含量进行预测模型建立。提取图像中感兴趣区域的平均光谱数据,经过不同光谱预处理后,利用连续投影法(SPA)选择特征波长,对4℃冷藏光谱提取13个特征波段(421,426,512,598,641,670,675,723,814,906,944,978,982 nm),对常温保藏光谱提取12个特征波段(425,507,555,598,673,680,685,718,809,910,954,978 nm)。对于MSC处理、MSC+SPA处理、Savitzky-Golay平滑处理和SNV 4种预处理方法,筛选出的最优预处理方法是冷藏采用MSC处理、常温采用MSC+SPA处理。对应这两种最优预处理方法,分别建立偏最小二乘法(PLSR)、支持向量机(SVM)、主成分回归(PCR)3种预测模型。在以上获得的6个预测模型中,得出冷藏、常温保藏的最优模型分别为MSCPLSR模型(R2C:0.852,RMSEC:0.940;R2P:0.857,RMSEP:0.894)和MSC+SPA-PLSR模型(R2C:0.872,RMSEC:0.866;R2P:0.787,RMSEP:1.007)。结果表明:利用高光谱成像技术,结合多种预测模型建立,能够测定不同保藏温度下的灵武长枣可溶性固形物含量,实现对灵武长枣准确快速的无损检测。 相似文献
2.
基于SiPLS算法的近红外光谱检测梨可溶性固形物含量 总被引:3,自引:0,他引:3
为了提高近红外光谱技术在梨的可溶性固形物含量(SSC)检测中的精度和稳定性,对采集的原始光谱进行标准归一化(SNV)预处理,采用联合区间偏最小二乘法(SiPLS)建立了SSC的预测模型;通过交互验证法确定了模型的主成分因子数,以预测时的相关系数(Rp)和预测均方根误差(RMSEP)作为评价指标对模型预测结果进行了分析,并与经典偏最小二乘(PLS)模型、间隔偏最小二乘(iPLS)模型进行了比较.结果表明,利用SiPLS所建的预测模型的最优组合包含21个光谱区间并联合4个子区间和15个主成分因子,其预测集的相关系数和预测均方根误差分别为0.9633和0.203;说明利用近红外光谱结合SiPLS算法可以准确、无损检测梨中可溶性固形物含量. 相似文献
3.
厚皮类瓜果内部品质的无损检测是目前水果产业的检测技术瓶颈。本文采用高光谱漫透射技术对脐橙可溶性固形物(SSC)含量进行可视化分析研究。通过基线校正(Baseline)预处理结合连续投影算法(SPA)优选9个特征波长,建立SSC偏最小二乘回归(PLSR)模型,校正集相关系数r_(cal)为0.891,校正集均方根误差RSMEC为0.612°Brix,预测集相关系数r_(pre)为0.889,预测集均方根误差RMSEP为0.630°Brix。最后,计算各个像素点的SSC值结合图像处理技术得出SSC的可视化分布图,直观判断脐橙SSC含量高低。 相似文献
4.
近红外光谱技术定量测定杨梅汁可溶性固形物 总被引:2,自引:1,他引:2
采用近红外光谱分析技术对浙江省不同产地的杨梅汁进行了光谱测定和定量分析,通过计算样品的杠杆值、学生残差和马氏距离来判别异常样品,采用偏最小二乘法(PLS)对杨梅汁的可溶性固形物进行建模分析,选取不同的分辨率和波段范围对光谱进行有效的信息提取和分析,确定了最佳的回归因子数和用于定量分析的最优波段范围。结果显示: 杨梅汁样品中有一个为异常样品,在建模时予以剔除;用于杨梅汁可溶性固形物检测的最佳分辨率和最优波段分别是4 cm-1和4 000~12 267.46 cm-1,最佳的回归因子数是8,该PLS模型的相关系数为0.957 85,校正均方根误差(RMSEC)、预测均方根误差(RMSEP)和交互验证标准偏差(RMSECV)分别是0.431,0.925和1.07°Brix。研究表明近红外光谱检测技术能用于杨梅汁可溶性固形物的定量分析。 相似文献
5.
高光谱成像技术结合特征提取方法的草莓可溶性固形物检测研究 总被引:1,自引:0,他引:1
采用高光谱成像技术结合不同的特征提取方法,实现了对草莓可溶性固形物含量的检测。通过提取154颗成熟无损伤草莓的高光谱图像的874~1 734 nm范围光谱信息,对941~1 612 nm光谱采用移动平均法(moving average,MA)进行预处理。基于残差法剔除19个异常样本后将剩余135个样本分为建模集(n=90)和预测集(n=45)。采用连续投影算法(successive projections algorithm, SPA),遗传偏最小二乘算法(genetic algorithm-partial least squares, GAPLS)结合连续投影算法(GAPLS-SPA),加权回归系数(weighted regression coefficient, Bw)以及CARS法(competitive adaptive reweighted sampling)选择特征波长分别提取14,17,24与25个特征波长,并采用主成分分析(principal component analysis, PCA)与小波变换(wavelet transform, WT)分别提取20与58个特征信息。分别基于全波段光谱、特征波长与特征信息建立PLS模型。所有模型都取得了较好的效果,基于全波段光谱的PLS模型与基于WT提取的特征信息的PLS模型的效果最优,建模集相关系数(rc)与预测集相关系数(rp)均高于0.9。结果表明高光谱成像技术结合特征提取方法可用于草莓可溶性固形物含量的检测。 相似文献
6.
可溶性固形物和碰伤是影响番茄品质的两个主要因素。研究的目的是探索可见近红外漫透射光谱同时在线检测番茄碰伤和可溶性固形物的可行性。在单通道送果速度5个每秒条件下,采集番茄近红外漫透射光谱。对比分析碰伤与正常番茄样品的近红外漫透射光谱特性,结果表明,碰伤与正常番茄样品的近红外漫透射光谱在光强上存在明显差异,碰伤果光强要强于正常果,其原因可能是碰伤后果肉变软,透光性变强;在650和675 nm处碰伤果比正常果要多两个吸收峰,可能是碰伤后,番茄表皮颜色发生变化所致。选取贡献率占比最多的前三个主成数,对正常果与碰伤果近红外漫透射光谱主成分定性分析,正常果与碰伤果不能有效聚类,故近红外漫透射光谱主成分定性分析效果不明显,需选择建立高维近红外漫透射光谱定性判别模型。故建立了碰伤番茄样品的近红外漫透射光谱偏最小二乘定性判别模型,误判率为0%,能正确判别碰伤果,故选用碰伤番茄样品的近红外漫透射光谱偏最小二乘定性判别模型作为番茄碰伤果在线剔除分选模型。通过对未参与建模的样品进行验证,能正确识别出碰伤果。经近红外漫透射光谱偏最小二乘定性判别模型剔除碰伤果后,按照可溶性固形物指标进行分级。分别使用全部波段和606~850 nm的波段进行建模预处理,且对全部波段和606~850 nm波段光谱进行2阶导数预处理,前后平滑设为9,利用连续投影算法与遗传算法优选可溶性固形物的光谱建模变量,对比发现,利用未经算法筛选过的606~850 nm波段光谱变量进行建模,效果最好,建立了可溶性固形物在线检测模型,预测集均方根误差为0.43 Brix°。采用未参与建模的样品进行碰伤和可溶性固形物同时在线检测验证,碰伤样品的分选准确率达96%,可溶性固形物样品的分选准确率达91%。表明:番茄碰伤和可溶性固形物近红外漫透射光谱同时在线检测是可行的。 相似文献
7.
水果新鲜度是反映水果是否新鲜、饱满的重要品质指标,为了探讨水果不同货架期的预测和判别方法,以酥梨为研究对象,利用高光谱成像技术,结合偏最小二乘判别法(PLS-DA)和偏最小二乘支持向量机(LS-SVM)算法对酥梨货架期进行判别。由光源、成像光谱仪、电控位移平台和计算机等构成的高光谱成像装置采集样品光谱,装置光源采用额定功率为200 W四个溴钨灯泡成梯形结构设计,光谱范围为1 000~2 500 nm,分别率为10 nm。选取优质酥梨30个,货架期设置为1, 5和10 d,对30个样品完成3次光谱图像的采集,并矫正原始图像。实验结果表明:基于图像的酥梨货架期定性分析时,对不同货架期样品的原始图像进行PCA压缩,得到三种不同货架期的权重系数数据,PC1图像提取特征波长点为1 280,1 390,1 800,1 880和2 300 nm,以特征图像的平均灰度值作为自变量且以货架期作为因变量建立定性判别模型,建模集68个,预测集22个。最小二乘支持向量机以RBF为核函数时,预测集中样品的误判个数为1,误判率为4.5%。而当采用lin核函数时,样品的误判个数为0,误判率为0。PLS-DA定性分析时RMSEC为1.24,Rc为0.93。RMSEP为1,Rp为0.96,预测集误判率为0。特征图像对酥梨货架期判别LS-SVM中的lin核函数所建立的模型结果较好,优于RBF核函数的建模效果,也优于PLS-DA判别模型。ENVI软件提取实验样品光谱后建立LS-SVM和PLS-DA判别模型,LS-SVM利用RBF和lin核函数误判率分别为4.5%和0。与RBF核函数相比,lin核函数所建立的模型预测酥梨货架期的效果更好。PLS-DA方法主成分因子数为12,RMSEC和RMSEP分别为0.48和0.78,Rc和Rp分别为0.99和0.97,建模集与预测集的误判率均为零。LS-SVM中的lin核函数所建立的模型结果较好,依然优于PLS所建立的检测模型。酥梨的光谱信息结合LS-SVM可以实现对酥梨货架期的检测和判别。基于图像建立酥梨的货架期预测模型与光谱相比,都实现了酥梨货架期的判别,而特征图像法,选择区域较少流失部分信息,计算量小,建模结果相对略差。酥梨货架期的高光谱成像检测模型研究为消费者正确评价水果新鲜度提供了理论指导, 也为后期果水果货架期检测仪器的开发提供了技术支持。 相似文献
8.
可溶性固形物含量是判断苹果内部品质的重要参考属性之一。利用高光谱技术获取苹果感兴趣区域的反射光谱,以S-G平滑(Savitzky-Golay smoothing)和直接正交信号校正(Direct orthogonal signal correction, DOSC)算法对光谱数据进行梯度预处理后,用后向区间偏最小二乘法(Bipls)优选出3,5,6,7,8,9,13,14,15,16,17,18,19,20,21,23等16个子区间,共计177个波长。结合竞争自适应重加权采样算法(CARS)再作进一步筛选,提取出449.6,512.9,544.8,547.2,594.3,596.8,928.2 nm等7个特征波长,利用偏最小二乘算法(PLS)建立基于特征波长的可溶性固形物含量检测模型,所得模型评价为R_c=0.906 2,RMSEC为0.482 2,R_p=0.871 6,RMSEP为0.614 0。该算法模型预测性能同Bipls和Bipls-SPA模型相比更为优异,证明了Bipls结合CARS算法在提高苹果可溶性固体物含量检测精度方面的有效性。 相似文献
9.
冬枣品质受其品种和生长环境等因素的影响,引起采后化转红指数不同,导致果实的颜色差异较大,从而影响其可溶性固形物(SSC)检测模型的分析精度。采用可见-近红外(Vis-NIR)光谱结合Norris-Williams平滑(NWS)、连续小波导数(CWD)、多元散射校正(MSC)、标准正态变量变换(SNV)和NWS-MSC五种光谱预处理方法构建不同颜色(红绿相间MJ,绿色GJ和红色RJ)冬枣SSC的偏最小二乘(PLS)定量分析模型,分别采用MJ,GJ,RJ,MJ-GJ和MJ-GJ-RJ五个样品集合建立冬枣SSC的定量分析模型,并采用由MJ-GJ-RJ三种颜色冬枣样品组成的测试集进行模型的评价;以不同建模样品集(校正集)的校正相关系数(Rc)和交互验证均方根误差(RMSECV)作为构建最优模型的评价指标;测试集的预测相关系数(Rp)和预测均方根误差(RMSEP)用于模型预测精度的评价。研究结果表明:分别采用MJ,GJ和RJ的独立样品集进行建模时,模型仅对具有相同颜色的冬枣样品的SSC实现了较好的预测;分别在MJ样品中加入GJ和GJ-RJ样品进行MJ-GJ和MJ-GJ-RJ两个混合样品集的定量模型的构建时,MJ-GJ模型对MJ和GJ样品的SSC具有较好的预测效果,其RMSECV,Rc,RMSEP,Rp分别为1.108,0.698,0.980,0.724和1.108,0.698,0.983,0.822,而对RJ样品的预测误差较大,模型的RMSECV,Rc,RMSEP,Rp为1.108,0.698,1.928,0.597;而MJ-GJ-RJ模型对三种颜色的冬枣SSC均有较好的预测结果:MJ-GJ-RJ模型对MJ样品的SSC模型的RMSECV,Rc,RMSEP,Rp为1.158,0.796,1.077,0.668;对GJ样品的SSC模型的RMSECV,Rc,RMSEP,Rp为1.158,0.796,0.881,0.861;对RJ样品的SSC模型的RMSECV,Rc,RMSEP,Rp为1.158,0.796,1.140,0.841;采用蒙特卡罗无信息变量消除(MCUVE)方法进一步对MJ-GJ-RJ样品集光谱的特征变量进行优选后,模型的Rc和Rp分别由原来的0.796和0.864提高到0.884和0.922,模型的RMSECV和RMSEP分别由1.158和0.946减小到0.886和0.721,模型具有较好的分析精度。采用可见-近红外光谱对不同颜色冬枣的SSC进行分析时,当建模集样品与测试集样品颜色属性相似或选择性质相似的建模变量进行模型构建时,模型具有更好的通用性。 相似文献
10.
以高光谱数据有效预测苹果可溶性固形物含量 总被引:4,自引:0,他引:4
从高光谱数据中选取能够有效进行内部品质检测的特征波长,是利用高光谱成像技术进行水果品质定量分析的关键。本文采用遗传算法(GA)、连续投影算法(SPA)和GA-SPA算法分别从400~1 000 nm的苹果高光谱图像中提取特征波长,利用偏最小二乘法(PLS)、最小二乘支撑向量机(LS-SVM)和多元线性回归(MLR)建模进行苹果可溶性固形物含量(SSC)的定量分析并进行了综合比较。160个样品中,120个用于建模,40个用于预测。比较发现SPA-MLR模型获得了最好的结果,R2p,RMSEP和RPD分别为0.950 1,0.308 7和4.476 6。结果表明:SPA能够有效地用于高光谱数据的变量选择,利用SPA-MLR可建立稳健的苹果SSC预测模型,较少的有效变量和MLR模型的易解释性表明该模型在在线检测和便携式仪器开发中具有较大的应用潜力。 相似文献
11.
水分含量影响干贝的口感、质地等品质特征,而且与其贮存期密切相关。应用高光谱成像与检测技术结合化学计量学方法,实现干贝水分含量的快速检测。实验采用高光谱成像系统采集380~1 030 nm波段范围内的高光谱图像,采集得到6个不同干燥时期共90个干贝样本高光谱图像。提取所有样本感兴趣区域的平均光谱数据,采用连续投影算法(SPA)和权重回归系数法(Bw)分别提取了7个和4个特征波长。基于所提取的特征波长和全波长分别建立光谱数据与水分含量的偏最小二乘回归(PLSR)模型,三种模型分别是SPA-PLSR,Bw-PLSR和PLSR。建模集和预测集相关系数都高于0.95,预测均方根误差都低于10%,三种模型均获得了较好的预测效果,都能很好地预测干贝的水分含量。在所有模型中,SPA-PLSR模型具有较少的波长变量和较高的预测能力(97.28%),因此本文基于SPA-PLSR模型,采用伪彩色图像编程技术实现了干贝图像上每个像素点的水分含量的可视化预测。结果表明,高光谱成像技术结合特征波长提取算法可用于干贝水分含量分布的可视化检测。 相似文献
12.
高光谱成像的土壤剖面水分含量反演及制图 总被引:2,自引:0,他引:2
传统土壤水分的获取方法仅可获得离散的土壤水分点位数据,难以获得剖面上精细且连续的水分含量分布图。研究了野外条件下利用近红外高光谱(882~1 709 nm)成像反演剖面土壤水分含量(SMC),并实现精细制图的可行性。研究剖面位于江苏省东台市,我们利用近红外高光谱成像仪对剖面进行了5天原位连续观测,共采集了280个土样用于烘干法测定SMC。原始高光谱图像经数字量化值(DN)校正、黑白校正、拼接、几何校正、剪切和掩膜等一系列预处理后,提取各采样点的平均光谱反射率。提取光谱(Raw)经吸光度[LOG10(1/R)],Savitzky-Golay平滑(SG)、一阶微分(FD)、二阶微分(SD)、多元散射校正(MSC)和标准正态变量(SNV)转换后,采用偏最小二乘回归(PLSR)和最小二乘支持向量机(LS-SVM)方法建立SMC预测模型,并对比分析不同光谱预处理方法与建模方法组合条件下SMC的预测精度。结果表明,光谱反射率随SMC增加逐渐降低,不同光谱预处理方法的预测精度有所差异,除MSC方法外,同一光谱预处理方法的LS-SVM模型预测精度均高于PLSR模型,并且基于LOG10(1/R)光谱的LS-SVM模型对SMC预测精度最高,其建模集的决定系数(R2c)和均方根误差(RMSEc)分别为0.96和0.65%,预测集的决定系数(R2p)、均方根误差(RMSEp)和相对分析误差(RPDp)分别为0.88,1.05%和2.88。利用最优模型进行剖面SMC的高空间分辨率精细制图,通过比较SMC反演图中提取的预测值与实测值关系发现预测精度较高(R2: 0.85~0.95, RMSE: 0.94%~1.02%),且两者在剖面中的变化趋势基本一致,说明SMC反演图不仅能很好地反映出土壤水分在整个剖面中毫米级的含量分布信息,也可反映出同一位置处不同天数间的含量差异。因此,利用近红外高光谱成像结合优化的预测模型,能够实现土壤剖面SMC的定量预测及精细制图,有助于快速、有效监测田间剖面土壤水分状况。 相似文献
13.
高光谱成像技术的柑橘植株叶片含氮量预测模型 总被引:11,自引:0,他引:11
氮素是果树生长发育的一种大量必需元素,及时准确地监控果树的氮营养状况,对果树的合理施肥、增产、优化果实品质以及减缓过量施氮引起的水资源污染具有重要意义。利用高光谱成像技术结合多变量统计学方法,建立了柑橘植株叶片的含氮量预测模型。研究步骤为:高光谱扫描、提取平均光谱曲线、预处理原始光谱数据、采用连续投影法提取特征波段和建立含氮量预测模型。从SG平滑、SNV、MSC、1-Der等11种预处理方法中筛选出的较优预处理方法是SG平滑、Detrending和SG平滑-Detrending。对应这三种最优预处理方法,先采用连续投影法挑选出各自的特征波长,然后将各特征波段下的光谱反射率作为偏最小二乘、多元线性回归和反向传播人工神经网络模型的输入,各自建立三个预测模型。从以上获得的9个预测模型中,得出两个最优模型SG平滑-Detrending-SPA-BPNN(Rp:0.851 3,RMSEP:0.188 1)和Detrending-SPA-BPNN(Rp:0.8609,RMSEP:0.159 5)。结果表明,利用高光谱数据测定柑橘叶片含氮量具有可行性。这为实时、准确地监控柑橘植株生长过程中叶片含氮量的变化以及合理科学的氮肥施加提供了一定的理论基础。 相似文献
14.
不同贮藏期水蜜桃硬度及糖度的检测研究 总被引:1,自引:0,他引:1
糖度和硬度作为水蜜桃的两个重要指标,决定其内部品质。在运输或售卖期间,水蜜桃果内水分流失,表面开始松软进而腐烂,内部品质发生变化。研究旨在探讨可见/近红外光谱预测水蜜桃不同贮藏期糖度和硬度的可行性,进一步预测水蜜桃的最佳贮藏期。采用漫透射和漫反射方式采集4个贮藏阶段的水蜜桃光谱,并测量糖度和硬度。分析了4个阶段水蜜桃的平均光谱,光谱强度随着贮藏天数增加而不断提高,且在650~680 nm区域内受果皮颜色及色素的变化产生波峰偏移。同时,分析了糖度和硬度的变化,糖度在贮藏期间逐渐提高,硬度在贮藏期间快速下降,最终糖度增加了3.31%,硬度下降了58.8%。采用多元散射校正、S-G卷积平滑、归一化处理及基线校正等预处理方法来减少噪声和误差对光谱的影响,并使用无信息变量消除(UVE)和连续投影算法(SPA)筛选特征波长,最后利用偏最小二乘回归(PLS)分别建立糖度和硬度的预测模型。分析糖度、硬度的PLS回归系数与平均光谱的波形发现,糖度的高回归系数分布在光谱多处,而硬度的该系数均在波峰波谷附近。SPA和UVE筛选的特征波长建立的糖度模型效果不佳,而硬度模型效果良好。结果表明,漫透射和漫反射检测方式下,糖度的最佳预测相关系数(Rp)及预测均方根误差(RMSEP)分别为0. 886,0.727和0.820,1.003,预处理方法分别是多元散射校正、平滑窗口宽度为3的S-G卷积平滑。此外,漫透射建立的硬度SPA-PLS模型,选用15个光谱变量,得到的Rp和RMSEP为0.798和0.976;而漫反射建立的UVE-PLS模型,选用113个光谱变量,得到的Rp和RMSEP为0.841和0.829。可以看出,漫透射方式预测水蜜桃贮藏期间的糖度更佳,而漫反射预测硬度更佳。利用可见/近红外光谱所建立的糖度和硬度预测模型,能够可靠地预测水蜜桃贮藏期内糖度和硬度的变化,对指导采摘、售卖时间和减少腐烂具有一定的参考价值。 相似文献
15.
高光谱成像可将图像和光谱相结合,同时获得目标对象的图像和光谱信息,已在农产品定性和定量分析检测方面得到广泛利用。利用可见-近红外高光谱成像结合化学计量学方法对贮藏期内灵武长枣果糖含量进行无损检测。采用高效液相色谱测量长枣果糖含量的化学值,可见-近红外高光谱系统采集长枣的高光谱图像,提取每个样本感兴趣区域的平均光谱;建立长枣贮藏期的径向基核函数支持向量机(radial basis kernel function support vector machine,RBF-SVM)模型;分别选用正交信号校正法(orthogonal signal correction,OSC)、多元散射校正(multiplicative scatter correction,MSC)、中值滤波(median-filter,MF)、卷积平滑(savitzky-golay,SG)、归一化(normalization,Nor)、高斯滤波(gaussian-filter,GF)和标准正态变换(standard normalized variate,SNV)等方法对原始光谱进行预处理;为减少数据量,降低维度,提高运算速度,采用反向区间偏最小二乘法(backward interval partial least squares,BiPLS)、间隔随机蛙跳算法(interval random frog,IRF)和竞争性自适应加权算法(competitive adaptive reweighted sampling,CARS)对光谱数据提取特征变量;建立全波段和特征波段的偏最小二乘回归(partial least squares regression,PLSR)和主成分回归(principle component regression,PCR)长枣果糖含量预测模型。结果表明:RBF-SVM判别模型校正集准确率为98.04%,预测集准确率为97.14%,能很好地预测长枣的贮藏期;利用BiPLS, IRF及CARS进行降维处理,提取特征波长个数为100, 63和23,占原光谱数据的80%,50.4%和18.4%;为简化模型运算过程并提高模型精度,采用CARS算法对BiPLS及IRF算法所选取的特征波长进行二次筛选,分别优选出18和15个特征波长,占原光谱数据的14.4%和12%,显著减少特征波长数;将全波段光谱与提取出的特征波长分别建立长枣果糖含量的PLSR及PCR预测模型,优选出CARS提取特征波长建立的PLSR模型效果最优,其中校正集的相关系数Rc=0.854 4,均方根误差RMSEC=0.005 3,预测集的相关系数Rp=0.830 3,均方根误差RMSEP=0.005 7,说明CARS有效地对光谱进行降维,简化了数据处理过程。研究表明,利用可见-近红外高光谱成像结合化学计量学方法及计算机编程,可以有效的实现灵武长枣果糖含量的快速无损分析,为灵武长枣内部品质的检测提供理论依据。 相似文献
16.
高光谱成像的褐土土壤速效钾含量预测 总被引:2,自引:0,他引:2
精细农业变量施肥取决于对农田的土壤养分分布的了解,快速获取土壤信息是实施精细农业的基础。速效钾是土壤肥力的重要参数,是植物生长发育所必需的营养元素。对土壤速效钾含量进行测量,是了解土壤肥力的重要途径,是实现精细农业的必要条件。以山西典型褐土土壤为研究对象,采集农田耕层褐土土壤样品共169份,样品经风干处理,手动捏碎较大的土粒并去除杂质后,未经研磨过筛处理而直接用于土壤近红外高光谱的测量。根据实验室速效钾含量测定结果,将所有土壤样品分为两类:其中速效钾含量低于100 mg·kg-1的样品共144个,随机选取108个作为低含量建模集(Lc),剩余36个作为低含量验证集(Lp);速效钾含量高于100 mg·kg-1的样品共25个,随机选取19个作为高含量建模集(Hc),剩余6个作为高含量验证集(Hp)。其中Lc和Hc统称为所有含量建模集(Tc),Lp和Hp统称为所有含量验证集(Tp)。获取所有土壤样本950~1 650 nm范围内的近红外高光谱图像。分别采用平均光谱曲线(R)、平均光谱曲线的一阶导数(FD)、平均光谱曲线与一阶导数共同建模(R&FD)、平均光谱曲线与一阶导数的乘积(R*FD)、平均光谱曲线与一阶导数的商(R/FD)等五种光谱数据预处理方法,结合偏最小二乘法(PLS),分别对建模集Tc,Lc及Hc建模,然后分别对验证集Tp,Lp及Hp进行验证。结果表明:土壤的平均光谱反射率随速效钾含量的增大呈现先增加后减小的趋势。当速效钾含量低于100 mg·kg-1时,所有波段的光谱反射率随速效钾含量的增加而增加;当速效钾含量在100~200 mg·kg-1之间时,所有波段的光谱反射率均达到最大值。当速效钾含量超过200 mg·kg-1时,950~1 400 nm的光谱反射率急剧减小,但曲线的整体斜率显著增加;且速效钾含量越高,曲线整体斜率越大。当速效钾含量高于100 mg·kg-1时,平均光谱曲线的一阶导数显著增大,且随速效钾含量的增加而增加。该研究建立的PLS模型,可以对整体(所有速效钾含量)和高含量(≥100 mg·kg-1)速效钾进行有效预测,但无法对低含量(≤100 mg·kg-1)速效钾进行预测。建模效果最好的光谱预处理方法为R*FD,其次为FD,R,而R&FD,R/FD预测效果相对较差。最优建模方式为:R*FD结合Tc建模,其PLS主因子个数为2个,RMSEc=29.293,RPDc=4.669,R2c=0.956;对Tp的验证效果为RMSEp=29.438,RPDp=4.740,R2p=0.958;对Hp的验证效果为RMSEp=23.033,RPDp=3.199,R2p=0.915。该模型能够根据土壤速效钾的含量对土壤进行分类:当预测值小于100 mg·kg-1时,表明土壤速效钾含量低于100 mg·kg-1,具体含量不确定;当预测值大于100 mg·kg-1时,预测值则能够很好反映土壤速效钾的真实含量。由于选用的土壤样本未经研磨和过筛处理,因而能够大大缩短样本制备时间,提高预测效率。该研究结果可为近红外高光谱成像应用于褐土土壤除速效钾含量以外其他营养成份的快速预测提供参考。 相似文献
17.
LI Li-jie YUE Yan-bin WANG Yan-cang ZHAO Ze-ying LI Rui-jun NIE Ke-yan YUAN Ling 《光谱学与光谱分析》2021,41(11):3538-3544
火龙果是近年来引进我国的营养价值高、经济效益好的新型水果,肉质茎枝是其主要光合器官,与常见果树具有较大差异。为探索以茎枝为光合作用器官的植被的光谱特征及其生化组分的估测方法,以火龙果为研究对象,在贵州省典型种植区罗甸县开展了4个氮肥梯度田间试验,同步测定不同养分丰缺程度下的火龙果茎枝高光谱和相应叶绿素含量数据;然后分析火龙果茎枝光谱数据的演化规律,并采用数学变换、连续小波变换算法并结合相关性分析算法处理分析火龙果茎枝光谱数据,提取并筛选特征波段;最后利用偏最小二乘算法构建火龙果茎枝叶绿素含量估测模型。研究结果表明:(1)火龙果肉质茎枝的原始光谱曲线整体趋势与常见绿叶植物相似,但随施氮量的增加,火龙果近红外处的光谱反射率逐渐降低,变化趋势与常见绿叶植物相反,茎枝光谱的吸收峰(谷)随施氮量的增加呈升高(加深)的趋势。(2)数学变换中的一阶微分与在L1-L5尺度内的连续小波变换能有效提升光谱对叶绿素含量的敏感性,火龙果茎枝原始光谱与叶绿素含量的敏感区域主要位于730~1 400 nm,数学变换与连续小波变换均能提升光谱对叶绿素含量的敏感性。与常见绿叶植物相比,火龙果茎枝敏感波段分布相对分散,且多位于730 nm附近与近红外区域(1 100~1 600 nm)。(3)数学变换和连续小波变换能明显提升光谱对火龙果茎枝叶绿素含量的估测能力,其中基于一阶微分的估测模型与基于连续小波变换L1与L4的估测模型分别为数学变换与连续小波变换的最优模型,其验证精度分别为R2验证=0.625,RMSE=0.048,RPD=1.238(一阶微分);R2验证=0.678,RMSE=0.037,RPD=1.652(连续小波变换);表明高光谱技术可以作为火龙果茎枝叶绿素含量和营养诊断的无损监测手段。该研究为完善不同植被类型基于高光谱指数的叶绿素反演提供了补充。 相似文献