共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasma treatment of polypropylene fabric for improved dyeability with soluble textile dyestuff 总被引:1,自引:0,他引:1
The impact of plasma treatment parameters on the surface morphology, physical-chemical, and dyeing properties of polypropylene (PP) using anionic and cationic dyestuffs were investigated in this study. Argon plasma treatment was used to activate PP fabric surfaces. Activated surfaces were grafted different compounds: 6-aminohexanoic acid (6-AHA), acrylic acid (AA), ethylendiamine (EDA), acryl amide (AAMID) and hexamethyldisiloxane (HMDS). Compounds were applied after the plasma treatment and the acid and basic dyeing result that was then observed, were quite encouraging in certain conditions. The possible formed oxidizing groups were emphasized by FTIR and ATR and the surface morphology of plasma treated PP fibers was also investigated with scanning electron microscopy (SEM).PP fabric could be dyed with acid and basic dyestuffs after only plasma treatment and plasma induced grafting, and fastnesses of the dyed samples were satisfactory. 相似文献
2.
《Ultrasonics sonochemistry》2014,21(6):1994-2009
Degradation of five textile dyes, namely Reactive Red 141 (RR 141), Reactive Blue 21 (RB 21), Acid Red 114 (AR 114), Acid Blue 113 (AB 113) and Basic Violet 16 (BV 16) in aqueous solution has been carried out with ultrasound (US) and in combination with rare earth ions (La3+ and Pr3+). Kinetic analysis of the data showed a pseudo-first order degradation reaction for all the dyes. The rate constant (k), half life (t1/2) and the process efficiency (φ) for various processes in degradation of dyes under different experimental conditions have been calculated. The influence of concentrations of dyes (16–40 mg/L), pH (5, 7 and 9) and rare earth ion concentration (4, 12 and 20 mg/L) on the degradation of dyes have also been studied. The degradation percentage increased with increasing rare earth amount and decreased with increasing concentration of dyes. Both horn and bath type sonicators were used at 20 kHz and 250 W for degradation. The sonochemical degradation rate of dyes in the presence of rare earths was related to the type of chromophoric groups in the dye molecule. Degradation sequence of dyes was further examined through LCMS and Raman spectroscopic techniques, which confirmed the sonochemical degradation of dyes to non-toxic end products. 相似文献
3.
Hideyuki Katsumata Toshiko Okada Satoshi Kaneco Tohru Suzuki Kiyohisa Ohta 《Ultrasonics sonochemistry》2010,17(1):200-206
The sonochemical photodegradation of fenitrothion, which is one of phosphorothiate insecticides, was carried out in the presence of Fe(III) and oxalate. The degradation rate was strongly influenced by initial concentrations of Fe(III) and oxalate. An initial fenitrothion concentration of 10 mg L−1 was completely degraded after 30 min at pH 6 under the optimum conditions. Therefore, the photo-Fenton reaction combined with sonication in the presence of oxalate was available around neutral pH. The decrease of TOC as a result of mineralization of fenitrothion was observed during ultrasound (US)/ferrioxalate/UV process. In addition, the formations of nitrite and sulfate ions as end-products were observed during this degradation system. The decomposition of fenitrothion gave two kinds of intermediate products. The degradation mechanism of fenitrothion was proposed on the base of the evidence of the identified intermediates. Based on these results, US/ferrioxalate/UV system could be useful technology for the treatment of wastewater containing fenitrothion. 相似文献
4.
The study focussed on the effect of ultrasonic frequency and co-pollutants on dechlorination and toxicity reduction of a toxic model pollutant, i.e. 2,3,5-trichlorophenol (TCP). The effect of ultrasonic frequency on TCP degradation and chloride formation was studied at 41, 206, 360, 618, 1068, and 3217 kHz. Most efficient ultrasonic dechlorination was achieved at 360 kHz. The degradation of TCP and adsorbable organic halogens followed pseudo-first-order rate kinetics. Toxicity in the bioluminescence test increased during the initial sonication period, indicating the temporary formation of more toxic reaction products. Subsequently, toxicity was significantly reduced. Dehalogenation efficiency decreased in the presence of the hydrophobic radical scavenger t-butanol, whereas hydrophilic co-pollutants such as acetate or glucose did not interfere with ultrasonic dechlorination and toxicity reduction. After ultrasonic pre-treatment, a fast biodegradation of the remaining organic pollutants was observed. In conclusion, the results demonstrate the potential of integrated ultrasonic/biological approaches for the treatment of wastewaters containing toxic pollutants. 相似文献
5.
A method for control of particle dimensions of nanostructural amorphous iron powder obtained by electrochemical reduction under the effect of ultrasonic oscillations in reaction medium is described in this paper. Depending on the character of ultrasonic oscillations nanostructural powders were obtained differing both in average dimension and distribution of particle dimensions. In the case of simultaneous sonocation using ultrasonic vibrations with frequencies differing from each other by a factor of ten (20 and 200 kHz), the effect is complex, but includes narrowing of the average particle dimension. 相似文献
6.
Perincek S Uzgur AE Duran K Dogan A Korlu AE Bahtiyari IM 《Ultrasonics sonochemistry》2009,16(1):184-189
Design requirements for industrial size ultrasound bath for textile treatments have been determined. For this purpose, effects of sound pressure level, bath temperature, bath volume, textile material type and hydrophility degree of fabric were examined extensively. Finite element analysis (FEA) was used to investigate spacing and alignment of the ultrasound source transducers to reach effective and homogenous acoustic pressure distribution in the bath. It was found that textile material type, bath temperature and volume led to significant changes at sound pressure level. These parameters should be taken into consideration in designing of industrial size ultrasound bath for textile treatments. Besides, wettability of textiles is highly dependent to the distance from the transducers. 相似文献
7.
8.
《Ultrasonics sonochemistry》2014,21(2):549-553
The present work reports a novel dual-pulse ultrasound enhanced electrochemical degradation (US-ECD) process that synchronizes alternatively ultrasound pulses and potential pulses to degrade nitrobenzene in aqueous solution with a high percentage degradation and low energy consumption. In comparison to the test results generated from the conventional US-ECD and original electrochemical degradation (ECD) process, the dual-pulse US-ECD process increased degradation percentages to nitrobenzene by 2% and 17%, respectively, while energy used in the pulse process was only about 46.5% of that was used in the conventional US-ECD process. Test results demonstrated a superior performance of the dual-pulse US-ECD process over those of other conventional ones. Impacts of pulse mode, initial pH value, cell voltage, supporting electrolyte concentration and ultrasonic power on the process performances were investigated. With operation conditions optimized in the study at pH = 3.0, cell voltage = 10 V, ultrasonic power = 48.84 W, electrolyte concentration = 0.1 M and an experiment running time of 30 min, the percentage degradation of nitrobenzene could reach 80% (US pulse time = 50 ms and ECD pulse time = 50 ms). This process provided a reliable and effective technical approach to degrade nitrobenzene in aqueous solution and significantly reduced energy consumption in comparison to the conventional US-ECD or original ECD treatment. 相似文献
9.
Degradation of 4-hydroxybenzoic acid by combined ultrasound irradiation and catalytic wet peroxide oxidation 总被引:5,自引:0,他引:5
Nikolopoulos AN Igglessi-Markopoulou O Papayannakos N 《Ultrasonics sonochemistry》2004,11(3-4):183-186
The aim of this study is to explore the potential benefits from the combined use of ultrasound irradiation and catalytic wet peroxide oxidation for the degradation of 4-hydroxybenzoic acid (4-HBA). The target compound degradation was studied under direct and indirect sonication, while silent conditions were employed as reference. The catalyst, a mixed (Al-Fe) pillared clay named FAZA, was in the form of powder and of extrudates. In the case of extrudates it was observed that ultrasound improves the catalyst performance due to reduction of diffusion resistance, thereby increasing the conversion after 4 h by 12-15 times. Increasing the initial concentration of 4-HBA was found to lead to lower conversion. The combined ultrasonic/catalytic process appears very promising for environmental applications. 相似文献
10.
Degradation of aryl-azo-naphthol dyes by ultrasound, ozone and their combination: effect of alpha-substituents 总被引:1,自引:0,他引:1
Lab-scale degradation of azo dyes with ultrasound (300 kHz), ozone and both was investigated using an aryl-azo-naphthol dye-C.I. Acid Orange 8. It was found that in all schemes color decay was faster than UV absorbance, and the rates followed pseudo-first-order kinetics except for the decay of UV-254 band by ozone. Sonication alone was sufficient for decolorization, but not for UV absorption abatement or mineralization. Ozonation was more effective than ultrasound in bleaching, but not as much for the mineralization of the dye. Combined operation of ultrasound and ozone improved the rate of bleaching and UV absorption decay and remarkably enhanced the mineralization of the dye. This was attributed to increased mass transfer of ozone in solution and its decomposition in the gas phase to yield hydroxyl radicals and other oxidative species. The effect of alpha-methyl substituent at the aryl carbon of the dye was found to decelerate the rate of degradation as a result of weakened intramolecular hydrogen bonding. 相似文献
11.
The electrosynthesis of hydrogen peroxide using the oxygen reduction reaction has been studied in the absence and presence of power ultrasound in a non-optimized sono-electrochemical flow reactor (20 cm cathodic compartment length with 6.5 cm inner diameter) with reticulated vitreous glassy carbon electrode (30 x 40 x 10 mm, 10 ppi, 7 cm(2)cm(-3)) as the cathode. The effect of several electrochemical operational variables (pH, volumetric flow, potential) and of the sono-electrochemical parameters (ultrasound amplitude and horn-to-electrode distance) on the cumulative concentration of hydrogen peroxide and current efficiency of the electrosynthesis process have been explored. The application of power ultrasound was found to increase both the cumulative concentration of hydrogen peroxide and the current efficiency. The application of ultrasound is therefore a promising approach to the increased efficiency of production of hydrogen peroxide by electrosynthesis, even in the solutions of lower pH (<12). The results demonstrate the feasibility of at-site-of-use green synthesis of hydrogen peroxide. 相似文献
12.
Shuangying Wei Junyou ShiJiyou Gu Di WangYanhua Zhang 《Applied Surface Science》2012,258(6):1995-1999
Acidic dyestuffs can bring brilliant colors to the wood and fixing agents can avoid the color loss. They could change the surface wettability of wood, which impact the gluing process of veneers. In condition of the higher moisture content of wood, the rare veneers, the veneers dyed by acidic dyestuffs and the dyed veneers fixed by Chitosan were glued respectively by one-component wet-curing isocyanate adhesive and the contact angles (θ) of the different gluing interfaces were measured. The dynamic wettability of these gluing interfaces was characterized by both the contact angle θ and the spreading-penetration parameter (K) calculated by θ. The results showed that the θ-values decreased significantly with the extension of time and the initial contact angles (θi) decreased with the moisture contents of veneers increasing, but the variation of the balance contact angles (θe) was reversed with θi. When the moisture contents of veneers were same, the variation of θ of the rare veneers was minimal and the variation of θ of the fixed veneers was maximal. The K-values of these gluing interfaces all decreased significantly with the moisture contents of veneers increasing, but the variations of K were different. The wetting model describing the dynamic wetting process was established on the basis of these variations. 相似文献
13.
《Ultrasonics sonochemistry》2014,21(5):1778-1786
The present work deals with application of sonochemical reactors for the treatment of imidacloprid containing wastewaters either individually or in combination with other advanced oxidation processes. Experiments have been performed using two different configurations of sonochemical reactors viz. ultrasonic horn (20 kHz frequency and rated power of 240 W) and ultrasonic bath equipped with radially vibrating horn (25 kHz frequency and 1 kW rated power). The work also investigates the effect of addition of process intensifying agents such as H2O2 and CuO, which can enhance the production of free radicals in the system. The combination studies with advanced oxidation process involve the advanced Fenton process and combination of ultrasound with UV based oxidation. The extent of degradation obtained using combination of US and H2O2 at optimum loading of H2O2 was found to be 92.7% whereas 96.5% degradation of imidacloprid was achieved using the combination of US and advanced Fenton process. The process involving the combination of US, UV and H2O2 was found to be the best treatment approach where complete degradation of imidacloprid was obtained with 79% TOC removal. It has been established that the use of cavitation in combination with different oxidation processes can be effectively used for the treatment of imidacloprid containing wastewater. 相似文献
14.
Soto-Cajiga JA Pedraza-Ortega JC Rubio-Gonzalez C Bandala-Sanchez M Romero-Troncoso Rde J 《Ultrasonics》2012,52(2):230-237
This paper describes a novel method for on-line real-time data reduction of radiofrequency (RF) ultrasound signals. The approach is based on a field programmable gate array (FPGA) system intended mainly for steel thickness measurements. Ultrasound data reduction is desirable when: (1) direct measurements performed by an operator are not accessible; (2) it is required to store a considerable amount of data; (3) the application requires measuring at very high speeds; and (4) the physical space for the embedded hardware is limited. All the aforementioned scenarios can be present in applications such as pipeline inspection where data reduction is traditionally performed on-line using pipeline inspection gauges (PIG). The method proposed in this work consists of identifying and storing in real-time only the time of occurrence (TOO) and the maximum amplitude of each echo present in a given RF ultrasound signal. The method is tested with a dedicated immersion system where a significant data reduction with an average of 96.5% is achieved. 相似文献
15.
Benzophenones without strong electron-releasing substituents were reduced into the corresponding benzhydrols at room temperature in moderate to good yields with Zn-NaOH-95% ethanol under ultrasound irradiation. This method is also propitious to the synthesis of 3-phenylphthalide and its derivates. 相似文献
16.
There is a limited work on the use of pulsed ultrasound for water disinfection particularly the case of natural water. Hence, pulsed ultrasound disinfection of natural water was thoroughly investigated in this study along with continuous ultrasound as a standard for comparison. Total coliform measurements were applied to evaluate treatment efficiency. Factorial design of 23 for the tested experimental factors such as power, treatment time and operational mode was applied. Two levels of power with 40% and 70% amplitudes, treatment time of 5 and 15 min and operational modes of continuous and pulsed with On to Off ratio (R) of 0.1:0.6 s were investigated. Results showed that increasing power and treatment time or both increases total coliform reduction, whereas switching from continuous to pulsed mode in combination with power and treatment time has negative effect on total coliform reduction. A regression model for predicting total coliform reduction under different operating conditions was developed and validated. Energy and cost analyses applying electrical and calorimetric powers were conducted to serve as selection guidelines for the choosing optimum parameters of ultrasound disinfection. The outcome of these analyses indicated that low power level, short treatment time, and high R ratios are the most effective operating parameters. 相似文献
17.
Individual and combined effects of ultrasound, ozone and UV irradiation: a case study with textile dyes 总被引:12,自引:0,他引:12
Comparative degradation of azo dyes by 520 kHz ultrasonic irradiation and its combinations with ozone and/or ultraviolet light (UV) was investigated using a probe dye C.I. Acid Orange 7. Operation parameters such as ultrasonic power density, ozone flow, UV intensity, and type and injection mode of the bubbling gas were optimized based on the rate of absorption decay in the visible and UV bands as estimated by regression analysis of absorption-time data. At equivalent initial dye concentrations and contact times, individual effects of UV irradiation, ultrasound and ozone were "no effect", "bleaching", and "bleaching/organic carbon degradation", respectively. UV irradiation, however, was found to induce a catalytic effect when applied in combination with either ultrasound or ozone schemes; and the overall degradation process was most rapid under simultaneous operation of the three in the presence of a continuous flow of a gas mixture made of argon and oxygen. The synergy observed in combined schemes was attributed to enhanced ozone diffusion by mechanical effects of ultrasound, and the photolysis of ultrasound-generated H(2)O(2) to produce hydroxyl radicals. 相似文献
18.
The primary motive of the current work is to achieve smaller mean particle size with narrow size distribution that can enhance the bioavailability of azithromycin (ARZ), an essential requirement due to its poor water solubility. Recrystallization of ARZ was evaluated using cooling as well as antisolvent crystallization approaches in the presence of ultrasonic irradiation with detailed study into effect of different parameters such as ultrasonic power, time and temperature. Ultrasound assisted antisolvent crystallization at low temperatures (<10℃) yielded best size reduction up to 80% with narrower distribution and also gave better yield of the product, that too within 5 min of sonication. With scale up considerations, recirculation mode of operation was also evaluated which offered promising results for the size reduction. Images captured using optical microscope and SEM revealed a nearly uniform rod/plate-shaped geometry. Increase in amorphous nature of ARZ was confirmed based on XRD analysis. FTIR analysis showed no significant changes in the functional groups when compared to the original sample. Overall, the work demonstrated an improved reprocessing approach based on the use of ultrasound with insights into effect of operating parameters and effect of ultrasound on various characteristics. 相似文献
19.
Degradation of the antibiotics amoxicillin in aqueous solution using sulphate radicals under ultrasound irradiation was investigated. The preliminary studies of optimal degradation methodology were conducted with only oxone (2KHSO5·KHSO4·K2SO4), cobalt activated oxone (oxone/Co2+), oxone + ultrasonication (oxone/US) and cobalt activated oxone + ultrasonication (oxone/Co2+/US). The chemical oxygen demand (COD) removal efficiency were in the order of oxone < oxone/Co2+ < oxone/US < oxone/Co2+/US for the amoxicillin solution. The variables considered for the effect of degradation were the temperature, the power of ultrasound, the concentration of oxone, as well as catalyst and the initial amoxicillin concentration. More than 98% of COD removal was achieved within 60 min under optimum operational conditions. Comparative analysis revealed that the sulfate radicals had the high oxidation potential and the use of ultrasound irradiation reduced the energy barrier of the reaction and increased the COD removal efficiency of organic pollutants. The degradation of amoxicillin follows the first-order kinetics. 相似文献
20.
Ultrasonic irradiation (640 kHz) leads to the effective degradation of 5-methyl-benzotriazole (5-MBT) in O2 saturated aqueous solution. Up to 97% of 5-MBT is eliminated within 2 h of treatment. Upon extended treatment of 6 h, UV absorbance of the n → π1 and π → π1 transitions associated with aromatic and conjugated systems are completely removed, indicating complete destruction of the aromatic system in 5-MBT. The decomposition of 5-MBT follows pseudo-first order kinetics and the observed decomposition rate dropped significantly in the presence of tertiary butyl alcohol. Detailed product studies were performed employing a negative mode ESI LC–MS. Twenty eight intermediate products were detected during ultrasonic mediated degradation of 5-MBT. Reaction pathways are proposed based on the structures of products assigned to observed 28 masses from LC–MS and commonly accepted degradation pathways observed by thermal and hydroxyl radical mediated pathways often associated with ultrasonic treatment. 相似文献