首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coedo AG  Padilla I  Dorado MT 《Talanta》2005,67(1):136-143
Element determination in solid waste products from the steel industry usually involves the time-consuming step of preparing a solution of the solid. Laser ablation (LA) inductively coupled plasma mass spectrometry (ICP-MS) has been applied to the analysis of Cr, Ni, Cu, As, Cd and Sn, elements of importance from the point of view of their impact on the environment, in electric arc furnace flue dust (EAFD). A simple method of sample preparation as pressed pellets using a mixture of cellulose and paraffin as binder material was applied. Calibration standards were prepared spiking multielement solution standards to a 1:1 ZnO + Fe2O3 synthetic matrix. The wet powder was dried and mechanically homogenised. Quantitative analysis were based on external calibration using a set of matrix matched calibration standards with Rh as a internal standard. Results obtained using only one-point for calibration without matrix matched, needing less time for standardization and data processing, are also presented. Data are calculated for flue dust reference materials: CRM 876-1 (EAFD), AG-6203 (EAFD), AG-6201 (cupola dust) and AG-SX3705 (coke ashes), and for two representative electrical arc furnace flue dusts samples from Spanish steelmaking companies: MS-1 and MS-2. For the reference materials, an acceptable agreement with certificate values was achieved, and the results for the MS samples matched with those obtained from conventional nebulization solutions (CN). The analytical precision was found to be better than 7% R.S.D. both within a single pellet and between several pellets of the same sample for all the elements.  相似文献   

2.
A method was developed for simultaneous determination of major (Ca), minor (Mg and Sr) and trace (Ba and U) elements in biocarbonates by inductively coupled plasma mass spectrometry (ICP-MS). The method precision (RSD%) is 0.73% for Ca, 0.77% for Mg, 0.59% for Sr, 2.02% for Ba, 1.13% for U, 0.67% for Mg/Ca, 0.27% for Sr/Ca, 2.06% for Ba/Ca and 1.23% for U/Ca. The ratio precision suggests that ICP-MS is satisfactory for obtaining multi-ratio data from biocarbonates. This technique was applied to 67 continuous coral samples.  相似文献   

3.
4.
Optical emission of laser-induced plasma on the surface of fresh vegetables provides sensitive analysis of trace elements for in situ or online detection of these materials. This emergent technique promises applications with expected outcomes in food security or nutrition quality, as well as environment pollution detection. Characterization of the plasma induced on such soft and humid materials represents the first step towards quantitative measurement using this technique. In this paper, we present the experimental setup and protocol that optimize the plasma generation on fresh vegetables, potatoes for instance. The temporal evolution of the plasma properties are investigated using time-resolved laser-induced breakdown spectroscopy (LIBS). In particular, the electron density and the temperatures of the plasma are reported as functions of its decay time. The temperatures are evaluated from the well known Boltzmann and Saha-Boltzmann plot methods. These temperatures are further compared to that of the typical molecular species, CN, for laser-induced plasma from plant materials. This comparison validates the local thermodynamic equilibrium (LTE) in the specific case of fresh vegetables ablated in the typical LIBS conditions. A study of the temporal evolution of the signal to noise ratio also provides practical indications for an optimized detection of trace elements. We demonstrate finally that, under certain conditions, the calibration-free LIBS procedure can be applied to determine the concentrations of trace elements in fresh vegetables.  相似文献   

5.
Pure elemental targets of Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo and W were irradiated with protons from 3.5 to 6.0 MeV, interference-free sensitivities were calculated for analysis by prompt gamma-ray spectrometry and sensitivity curves were plotted to show the variation of sensitivity with bombarding energy. Appropriate bombarding energies were selected for analysis and the extent of possible inter-element interferences and background effects were determined. Standard reference steels were used to evaluate this method for the determination of the minor elements Si, V, Cr, Mn and Co.  相似文献   

6.
A systematic measurement of plasma properties (temperature, electron number density, pressure) was performed during LIBS of silicon with two nanosecond pulsed lasers operating at 1064 nm. The spectral characteristics of the plasmas were measured to determine the plasma properties as delay time between the laser pulses was changed from 0 to 10 ms. The plasma properties and crater dimensions increased abruptly from 100 to 200 ns. The crater depth increased from 2 to 10 μm (volume increased about 5 times) per pair of double pulses. Enhanced mass removal was indicative of a phase explosion mechanism. Spatial images of plasma emission were measured to study the dynamics of plasma expansion.  相似文献   

7.
Inductively coupled plasma quadrupole mass spectrometry (ICP-QMS), ICP sector field mass spectrometry (ICP-SFMS) and ICP atomic emission spectrometry (ICP-AES) were compared with regard to the direct determination of rare earth elements (REEs) in geological samples. In order to reduce the polyatomic interferences occurring in ICP-QMS, the use of a cooled spray chamber was optimized, obtaining a significant decrease of the oxide ions formation (about 50%) and a consequent mitigation of the interfering effects. Precision and accuracy of the method were demonstrated by the analyses of sediment and soil certified reference materials. ICP-SFMS working in high-resolution mode also provided accurate results, with similar precision to ICP-QMS (RSD%: 3-8%) and comparable or better limits of detection. Quantification limits of the procedures were 18-52 ng g−1 and 10-780 ng g−1 for sector field- and quadrupole-ICP-MS, respectively. Accurate and precise determination of most REEs was also achieved by ICP-AES using both pneumatic and ultrasonic nebulization, after a careful selection of the emission lines and compensation for non-spectral interferences by internal standardization. The three techniques were finally applied to glaciomarine sediment samples collected in Antarctica, providing comparable analytical data on REE abundance and depth pattern.  相似文献   

8.
Two microwave digestion systems (open-focused and closed-pressurized) were tested for the mineralization of human brain and bovine liver (NIST SRM 1577a) as dissolution steps prior to the determination of 16 trace elements (Bi, Cd, Co, Cs, Cu, Fe, Hg, Mn, Mo, Pb, Rb, Sb, Sn, Sr, Tl, and Zn) by inductively coupled plasma mass spectrometry (ICP-MS). Digestion parameters (mass of sample, digestion mixture, and power/time steps) were optimized using temperature and pressure sensors. Digestions with the open-focused microwave system require larger volumes of conc. HNO3 and 30% H2O2 than digestions with the closed-pressurized system. Both systems produce correct results for the bovine liver samples. The concentrations obtained for the digests of the open-focused system tend to be less precise than the concentrations from the closed-pressurized digests. Because the open-focused digests must be diluted to 50 mL to bring the acid concentration to 0.7–2.0 mol/L required by the ICP-MS (closed-pressurized digests need to be diluted to only 20 mL), the detection limits for the system with the open-focused digestion are higher than for the system with the closed-pressurized digestor. The open-focused digestor cannot handle more than 150 mg brain tissue, whereas the closed-pressurized system can mineralize 470 mg. The latter method gave better results with brain tissue than the open-focused system. The preparation of brain tissue as reference material for the determination of trace elements in brain samples is described.  相似文献   

9.
Two microwave digestion systems (open-focused and closed-pressurized) were tested for the mineralization of human brain and bovine liver (NIST SRM 1577a) as dissolution steps prior to the determination of 16 trace elements (Bi, Cd, Co, Cs, Cu, Fe, Hg, Mn, Mo, Pb, Rb, Sb, Sn, Sr, Tl, and Zn) by inductively coupled plasma mass spectrometry (ICP-MS). Digestion parameters (mass of sample, digestion mixture, and power/time steps) were optimized using temperature and pressure sensors. Digestions with the open-focused microwave system require larger volumes of conc. HNO(3) and 30% H(2)O(2) than digestions with the closed-pressurized system. Both systems produce correct results for the bovine liver samples. The concentrations obtained for the digests of the open-focused system tend to be less precise than the concentrations from the "closed-pressurized" digests. Because the "open-focused" digests must be diluted to 50 mL to bring the acid concentration to 0.7-2.0 mol/L required by the ICP-MS (closed-pressurized digests need to be diluted to only 20 mL), the detection limits for the system with the open-focused digestion are higher than for the system with the closed-pressurized digestor. The open-focused digestor cannot handle more than 150 mg brain tissue, whereas the closed-pressurized system can mineralize 470 mg. The latter method gave better results with brain tissue than the open-focused system. The preparation of brain tissue as reference material for the determination of trace elements in brain samples is described.  相似文献   

10.
The application of inductively coupled plasma mass spectrometry to the analysis of basic slags has been studied. A conventional dissolution-fusion procedure and a microwave digestion system were used for sample dissolution. Suitable selection of the analyte isotopes and the use of appropriate instrument settings and of internal standardization makes it possible to determine the major and minor elements in the same test sample dilution. Use of the omnirange device and low-abundance isotopes for the determination of the major elements is evaluated. The influence of the attack reagents is tested and the interferences caused by polyatomic ions are studied and corrected by applying elementary mathematical equations. For the major and minor elements considered, precision was found to be better than 1% (RSD). Results are presented for three basic slag reference materials and the agreement between the certified and found values shows the capacity of the method accurately to determine elemental concentrations in basic slags.  相似文献   

11.
A simple rapid method for the determination of major and minor elements in silicates is reported. Powdered sample (50 mg) is treated with hydrochloric and hydrofluoric acids in a small sealed Teflon vessel. After addition of boric acid, silicon, aluminium, iron, titanium, manganese, calcium, magnesium, sodium, and potassium are determined by inductively coupled plasma emission spectrometry. The method is satisfactory for a variety of standard silicate materials.  相似文献   

12.
Samples (0.5 g) are decomposed with mixed acids in a sealed teflon vessel. After suitable treatment, barium, cobalt, chromium, copper, lithium, nickel, scandium. strontium, vanadium and zirconium are determined sequentially. The method is satisfactory for a variety of standard silicate materials.  相似文献   

13.
A microwave digestion method in a closed vessel was developed for the determination of trace metals in atmospheric aerosols using inductively coupled plasma mass spectrometry (ICP-MS). A recovery study for the elements V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Sb, and Pb was conducted using multi-elemental standard solutions, NIST 1633b Trace Elements in Coal Fly Ash, and NIST 1648 Urban Particulate Matter. A simple digestion method using only HNO3/H2O2 gave good recoveries (90%–108%) for all elements except Cr in SRM 1648, but yielded low recoveries for SRM 1633b. A more robust method using HNO3/H2O2/HF/H3BO3 yielded higher recoveries (82%–¶103%) for the lighter elements (V – Zn) in SRM 1633b, and improved the Cr recovery in SRM 1648, but decreased the Se recovery in both SRMs. A comparative analysis of aerosol samples obtained at a remote mountain location Nathiagali, Pakistan (2.5 km above mean sea level), and Mayville, New York, downwind from the highly industrialized Midwestern United States, was carried out using Instrumental Neutron Activation Analysis (INAA) for the elements Cr, Mn, Fe, Co, Zn, As, Se, and Sb. The simple digestion method yielded excellent agreement for Cr, Fe, Zn, As, Se, and Sb, with slopes of the ICP-MS vs. INAA regressions of 0.90–1.00 and R2 values of 0.96–1.00. The regressions for Mn and Co had slopes of 0.82 and 0.84 with R2 values of 0.83 and 0.82, respectively. Addition of HF/H3BO3 did not improve the correlation for any of the elements and degraded the precision somewhat. The technique provides sensitivity and accuracy for trace elements in relatively small aerosol samples used in atmospheric chemistry studies related to SO2 oxidation in cloud droplets. The ability to determine concentrations of a very large number of elements from a single analysis will permit source apportionment of various trace pollutants and hence strategies to control the sources of air pollution. This is particularly important as the health effects of particulate matter are increasingly recognized.  相似文献   

14.
A method has been developed for the simultaneous quantification of major to ultratrace elements in geological samples using quadrupole ICP-MS techniques. The sample preparation involves fusion with LiBO2 and dilution in HNO3-HF which allows complete decomposition of refractory minerals and quantification of the elements of interest. The effects of high Total Dissolved Solids (TDS) and Li in the solution are minimized using a matrix-tolerant interface and conditioning the instrument with LiBO2 solution. The signal drift is moreover controlled using conventional internal standards and specific Drift Correction Standards (DCS). A key issue of the technique is the external calibration using selected Certified Reference Materials (CRM). Depending on the sample type and analytes of interest three optimized programmable modes are used sequentially: Standard, Collision Cell (CCT) and Kinetic Energy Discrimination (KED) mode. The method allows to quantify more than 40 elements in concentrations from tens-of-percent to <0.1 ppm levels during a single experiment. The method has been validated through the analysis of different CRMs with recovery factors of ca. 100% and typical 2σ errors of <10%.  相似文献   

15.
A microwave digestion method in a closed vessel was developed for the determination of trace metals in atmospheric aerosols using inductively coupled plasma mass spectrometry (ICP-MS). A recovery study for the elements V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Sb, and Pb was conducted using multi-elemental standard solutions, NIST 1633b Trace Elements in Coal Fly Ash, and NIST 1648 Urban Particulate Matter. A simple digestion method using only HNO3/H2O2 gave good recoveries (90%-108%) for all elements except Cr in SRM 1648, but yielded low recoveries for SRM 1633b. A more robust method using HNO3/H2O2/HF/H3BO3 yielded higher recoveries (82%-103%) for the lighter elements (V-Zn) in SRM 1633b, and improved the Cr recovery in SRM 1648, but decreased the Se recovery in both SRMs. A comparative analysis of aerosol samples obtained at a remote mountain location Nathiagali, Pakistan (2.5 km above mean sea level), and Mayville, New York, downwind from the highly industrialized Midwestern United States, was carried out using Instrumental Neutron Activation Analysis (INAA) for the elements Cr, Mn, Fe, Co, Zn, As, Se, and Sb. The simple digestion method yielded excellent agreement for Cr, Fe, Zn, As, Se, and Sb, with slopes of the ICP-MS vs. INAA regressions of 0.90-1.00 and R2 values of 0.96-1.00. The regressions for Mn and Co had slopes of 0.82 and 0.84 with R2 values of 0.83 and 0.82, respectively. Addition of HF/H3BO3 did not improve the correlation for any of the elements and degraded the precision somewhat. The technique provides sensitivity and accuracy for trace elements in relatively small aerosol samples used in atmospheric chemistry studies related to SO2 oxidation in cloud droplets. The ability to determine concentrations of a very large number of elements from a single analysis will permit source apportionment of various trace pollutants and hence strategies to control the sources of air pollution. This is particularly important as the health effects of particulate matter are increasingly recognized.  相似文献   

16.
The determination of naturally occurring and anthropogenic radionuclides in the environment by inductively coupled plasma mass spectrometry has gained recognition over the last fifteen years, relative to radiometric techniques, as the result of improvement in instrumental performance, sample introduction equipment, and sample preparation. With the increase in instrumental sensitivity, it is now possible to measure ultratrace levels (fg range) of many radioisotopes, including those with half-lives between 1 and 1000 years, without requiring very complex sample pre-concentration schemes. However, the identification and quantification of radioisotopes in environmental matrices is still hampered by a variety of analytical issues such as spectral (both atomic and molecular ions) and non-spectral (matrix effect) interferences and instrumental limitations (e.g., abundance sensitivity).The scope of this review is to highlight recent analytical progress and issues associated with the determination of radionuclides by inductively coupled plasma mass spectrometry. The impact of interferences, instrumental limitations (e.g., degree of ionization, abundance sensitivity, detection limits) and low sample-to-plasma transfer efficiency on the measurement of radionuclides by inductively coupled plasma mass spectrometry will be described. Solutions that overcome these issues will be discussed, highlighting their pros and cons and assessing their impact on the measurement of environmental radioactivity. Among the solutions proposed, mass and chemical resolution through the use of sector-field instruments and chemical reactions/collisions in a pressurized cell, respectively, will be described. Other methods, such as unique sample introduction equipment (e.g., laser ablation, electrothermal vaporisation, high efficiency nebulization) and instrumental modifications/optimizations (e.g., instrumental vacuum, radiofrequency power, guard electrode) that improve sensitivity and performance will also be examined.  相似文献   

17.
The large surface area of barks from many tree species enables the effective accumulation of pollutants. Therefore, the analysis of bark material will provide useful information about the degree of pollution of a certain region. The determination of main, minor, and trace elements (Al, Ca, Cd, Ce, Cr, Cu, Fe, Mn, P, Pb, S, Ti and Zn) in bark was performed with an Nd:YAG laser coupled to an ICP-MS system. Bark standards for the calibration by laser ablation ICP-MS were prepared from different bark layers which differ for some relevant elements in concentrations. Four digestion procedures for the decomposition of the standard pellets, the numbers of laser shots per sample and of samples per region necessary have been investigated. Representative results were obtained for 5 or more samples taken from different individuals of one species of a sampling area and the averaged element concentrations of 10 separately placed laser shots for each sample. Laser ablation ICP-MS was applied for the characterization of real bark samples from different regions with high and low pollution burden. It was shown that the method is well suited to characterize different degrees of environmental impact. Anthropogenic sources were responsible for the higher concentrations of most of the elements under investigation.  相似文献   

18.
The large surface area of barks from many tree species enables the effective accumulation of pollutants. Therefore, the analysis of bark material will provide useful information about the degree of pollution of a certain region. The determination of main, minor, and trace elements (Al, Ca, Cd, Ce, Cr, Cu, Fe, Mn, P, Pb, S, Ti and Zn) in bark was performed with an Nd:YAG laser coupled to an ICP-MS system. Bark standards for the calibration by laser ablation ICP-MS were prepared from different bark layers which differ for some relevant elements in concentrations. Four digestion procedures for the decomposition of the standard pellets, the numbers of laser shots per sample and of samples per region necessary have been investigated. Representative results were obtained for 5 or more samples taken from different individuals of one species of a sampling area and the averaged element concentrations of 10 separately placed laser shots for each sample. Laser ablation ICP-MS was applied for the characterization of real bark samples from different regions with high and low pollution burden. It was shown that the method is well suited to characterize different degrees of environmental impact. Anthropogenic sources were responsible for the higher concentrations of most of the elements under investigation. Received: 26 April 1999 / Revised: 24 August 1999 / /Accepted: 28 August 1999  相似文献   

19.
A validation study was carried out in order to evaluate the efficiency of inductively coupled plasma-optical emission spectrometry (ICP-OES) for the analysis of minor elements (manganese, chromium, copper, iron, and titanium) in aluminium alloys. Aluminium casting samples were obtained by adding compressed powder compacts of each alloying element and aluminium (minitablets) to aluminum baths in a laboratory crucible furnace. Digestion of solid samples was performed using concentrated HCI and H202 35% (v/v) previous to analysis by ICP-OES without any matrix separation. This solution-based method was validated considering direct current arc spectrometry as the reference method based on direct analysis without any pretreatment of the solid samples considered. Univariate statistical procedures were carried out, for which precision <3% and trueness of the analytical results were taken into account.  相似文献   

20.
The fast sequential multi-element determination of 11 elements present at different concentration levels in environmental samples and drinking waters has been investigated using high-resolution continuum source flame atomic absorption spectrometry. The main lines for Cu (324.754 nm), Zn (213.857 nm), Cd (228.802 nm), Ni (232.003 nm) and Pb (217.001 nm), main and secondary absorption lines for Mn (279.482 and 279.827 nm), Fe (248.327, 248.514 and 302.064 nm) and Ca (422.673 and 239.856 nm), secondary lines with different sensitivities for Na (589.592 and 330.237 nm) and K (769.897 and 404.414 nm) and a secondary line for Mg (202.582 nm) have been chosen to perform the analysis. A flow injection system has been used for sample introduction so sample consumption has been reduced up to less than 1 mL per element, measured in triplicate. Furthermore, the use of multiplets for Fe and the side pixel registration approach for Mg have been studied in order to reduce sensitivity and extend the linear working range. The figures of merit have been calculated and the proposed method was applied to determine these elements in a pine needles reference material (SRM 1575a), drinking and natural waters and soil extracts. Recoveries of analytes added at different concentration levels to water samples and extracts of soils were within 88–115% interval. In this way, the fast sequential multi-element determination of major and minor elements can be carried out, in triplicate, with successful results without requiring additional dilutions of samples or several different strategies for sample preparation using about 8–9 mL of sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号