首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Reactions of glyoxal bis(morpholineN-thiohydrazone), H2gbmth, with NiCl2·6H2O, Ni(OAc)2·4H2O, Ni(acac)2· H2O, CuCl2·2H2O, Cu(OAc)2·H2O, Cu(acac)2, CoCl2· 6H2O, Co(OAc)2·4H2O and Co(acac)2·2H2O yield complexes of the type [M(gbmth)], [M=NiII, CuII or CoII]. Diacetyl reacts with morpholineN-thiohydrazide in the presence of nickel salts to yield [NiII(dbmth)], [NiII(dmth)(OAc)]H2O and [NiII(Hdmth)(NH3)Cl2] involving N2S2 and NSO donor ligands. Copper and cobalt complexes of N2S2 and NSO donor ligands with compositions [CuII(dbmth)], [CoII(dbmth)]·4H2O and [CoII(H2dbmth)]Cl2, have been isolated. The compounds have been characterised by elemental analyses, magnetic moments, molar conductance values and spectroscopic (electronic and infrared) data.  相似文献   

2.
Summary The reaction between chromone-3-carboxaldehyde-4-phenylthiosemicarbazone (HCPT) and some hydrated metal salts of CoII, NiII and CuII give complexes of the type [Cu(HCPT)Cl2],[Cu(CPT)BrH2O],[Cu(CPT)2]·2H2O, [Ni(CPT)2(H2O)2]·2H2O, [Co(CPT)2(OAc)] and [Co(CPT)2(H2O)2]X·2H2O (where X=Cl or Br). The metal complexes were characterized by elemental analyses, molar conductivities, and spectal (i.r. and visible) and magnetic studies. I.r. spectra show that the HCPT coordinates in the thione or thiol form and behaves in a bidentate manner. Also, HCPT behaves as an oxidizing agent towards CoII forming diamagnetic CoIII complexes. An octahedral structure is proposed for both CoIII and NiII complexes, while a square-planar structure is proposed for CuII complexes on the basis of magnetic and spectral measurements.  相似文献   

3.
The reaction of CuCl2 · 2H2O and CdCl2 with di-(2-picolyl)sulfide (dps) leads to the formation of mononuclear copper(II) and binuclear cadmium(II) complexes, [Cu(dps)Cl2] · H2O (1) and [(dps)(Cl)CdII(μ-Cl)2CdII(Cl)(dps)] (2). The copper atom in (1) is coordinated to one sulfur and two nitrogen atoms from the dps ligand and two chlorides in a distorted square-pyramidal environment. Complex (2) has two distorted octahedra sharing the basal edge that contain the bridging chloro ligands, each of which resides at a center of inversion. Cyclic voltammetric data show that (1) undergoes two reversible one-electron waves corresponding to CuII/CuIII and CuII/CuI processes. However, cyclic voltammetry of (2) gives two irreversible reduced waves.  相似文献   

4.
Synthesis and antibacterial activity of metal complexes of ciprofloxacin   总被引:3,自引:0,他引:3  
The interactions of ciprofloxacin (HCipro) with transition metals have been investigated. Two types of complexes, [M(Cipro)(OAc)(H2O)2] · 3H2O (M = MnII, CoII, CuII or CdII) and [M(Cipro)(OAc)] · 6H2O (M = NiII or ZnII), were obtained and characterized by physicochemical and spectroscopic methods. The i.r. spectra of the complexes suggest that the ciprofloxacin behaves as a monoanionic bidentate ligand. In vitro antibacterial activities of the HCipro and the complexes were tested.  相似文献   

5.
Three inorganic–organic hybrid materials based on Keggin-type polyoxometalates (POMs), [CuII2(phen)2(4,4′-bipy)(H4,4′-bipy)2(H2O)2][PMo12O40]2·2H2O (1), [CuII(phen)2(H4,4′bipy)][PW12O40]·H2O (2), and [CuII2(phen)2(4,4′-bipy)(BW12O40)(H2O)2](H24,4′-bipy)0.5·3H2O (3) (phen = 1,10-phenanthroline, 4,4′-bipy = 4,4′-bipyridine), were synthesized using different POMs in the hydrothermal conditions. Compounds 1–3 were characterized by single-crystal X-ray diffraction, IR spectra, elemental analyses, powder X-ray diffraction analyses, and thermogravimetric analyses. Compound 1 presents a two-dimensional (2-D) network containing the Keggin-type [PMo12O40]3? anion and dinuclear metal–organic units [CuII2(phen)2(4,4′-bipy)(H4,4′-bipy)2(H2O)2]3+. Compound 2 is a 2-D architecture constructed from a [PW12O40]3? and mononuclear metal–organic units [CuII(phen)2(H4,4′-bipy)]3+. In 3, the [BW12O40]5? anions link [CuII2(phen)2(4,4′-bipy)] units to form a one-dimensional (1-D) chain [CuII2(phen)2(4,4′-bipy)(BW12O40)(H2O)2]; the 1-D chain connects with protonated 4,4′-bipy ligands and lattice waters, yielding a 2-D layer. Fluorescence spectra, UV–vis spectra, and electrochemical properties of 1–3 have been investigated.  相似文献   

6.
A new benzimidazoyl ligand bis[(N-ethylbenzimidazol-2-yl)methyl]ether (EDGB) and CuII complexes [Cu(L1) (L2)](ClO4)·mEt2O·nH2O [L1 = bis[(benzimidazol-2-yl)methyl]ether (DGB) or EDGB, L2 = 2,2-bipyridine (bipy) or 1,10-phenanthroline (phen)] have been synthesized and characterized by elemental analyses and i.r. spectra. The single-crystal structure of the [Cu(phen)(DGB)(OClO3)]ClO4·Et2O·0.5H2O complex was determined by X-ray diffraction. The geometry around Cu is best described as a distorted octahedron with four nitrogen atoms from phen and DGB ligands forming the equatorial plane. The oxygen atoms of DGB and one perchlorate group are in the axial positions with semi-coordinated bonding modes. The electrochemical behavior of the complexes is described.  相似文献   

7.
Tuning reaction temperatures as well as the variation in starting copper salts and solvents led to the formation of a new series of Cu(II) coordination compounds with 2,3-bis(2-pyridyl)pyrazine (dpp): a mononuclear [Cu(acac)(dpp)(NO3)] (1) complex, two dinuclear [Cu2(acac)2(dpp)(NO3)(H2O)]NO3 (2) and [Cu2(Hdpp)2(ox)(Cl)2(H2O)2]Cl2·6(H2O) (4) complexes, and four coordination polymers {[Cu4(dpp)2(ox)(Cl)6]}n (3), {[Cu4(dpp)2(ox)(NO3)6(H2O)2]∙1.2(H2O)}n (5), {[Cu(dpp)(NO3)](NO3)·(H2O)}n (6) and {[Cu(dpp)(SO4)(H2O)2]}n (7), where acac = acetylacetonate, ox2− = oxalate. Remarkably, the treatment of Cu(II) chloride dihydrate with dpp in methanol solution led to an unusual in situ condensation of dpp with acac to produce [Cu2(acdpp)2(Cl)4]·2(MeOH) (8). The structure of 1 consists of neutral, mononuclear [Cu(acac)(dpp)(NO3)] units with acac and dpp acting as bidentate ligands. In 2, the dpp ligand coordinates in a bis-chelating mode to two Cu(II) ions and bridges them into a dimeric entity, whereas an oxalate linker joins [Cu(Hdpp)(Cl)2(H2O)]+ units into a dimer in 4. Compounds 3, 5, 6 and 7 are 1D chain coordination polymers, which incorporate two symmetry independent metal centers and different bridging ligands: Hdpp+ as a protonated cationic or dpp as a neutral chelating ligand and oxalate, Cl anions or sulfate di-anions as bridging ligands. Magnetic studies were performed on samples 1 and 2, and the analysis reveals a very weak magnetic exchange coupling mediated via the dpp ligand.  相似文献   

8.
Summary N-Cyano-N-methyl-N(2-[(5-methyl-1H-imidazol-4-yl)-methylthio] ethyl) guanidine cimetidine (CM), complexes with CoII, NiII and CuII are described. The compounds are of stoichiometry [M(CM)2]SO4 · nH2O [M = CoII, NiII or CuII; n = 3,3 or 4, respectively], [M(CM)2](ClO4)2 [M = CoII or NiII], [M(CM)2]Cl2 · nH2O [M=CoII, NiII or CuII; n = 1, 2, or 2, respectively] and [Cu(CM)SO4] · 2H2O. The electronic spectra of the compounds in solid state, magnetic susceptibilities and i.r. and e.p.r. spectra were studied. Octahedral environments are proposed for the complexes: [M(CM)2]SO4·nH2O, [M(CM)2](ClO4)2, [Ni(CM)2]Cl2 · 2H2O, [Cu(CM)2]Cl2 · 2H2O and [Cu(CM)SO4] · 2H2O and a tetrahedral structure for [Co(CM)2]Cl2 · H2O.  相似文献   

9.
Four new metal‐organic frameworks [Cu2(2,2′‐bipy)2(ox)(H2O)2]·(H2bptc) ( 1 ), [Cu(bptc)0.5(phen)(H2O)]·H2O ( 2 ), Co2(bptc)(bmb)1.5 ( 3 ) and [Cd2(bptc) (bmb)]·3H2O ( 4 ) (H4bptc = 3,3′,4,4′‐biphenyltetracarboxylic acid, ox = oxalate, phen = 1,10‐phenanthroline, 2,2′‐bipy = 2,2′‐bipyridine and bmb = 4,4′‐bis((1H‐imidazol‐1‐yl)methyl)biphenyl), were obtained by reactions of the corresponding metal salts with H4bptc and N‐containing auxiliary ligands and their structures were determined by single‐crystal X‐ray diffraction. The results reveal that 1 has a 0‐D structure consisting of discrete ionic entities, while 2 features a 1‐D ladder structure. Additionally, there exist π‐π stacking and intermolecular hydrogen‐bonding interactions in 1 and 2 , respectively, forming 3‐D supramolecular structures. In 3 ‐ 4 , undulating 2‐D metal‐bptc layer structures are formed with two different coordination modes of bptc carboxylate groups, respectively, which are further extended by bmb into 3‐D structures. Magnetic properties of 1 and 3 have been studied. The photoluminescence property of 4 has also been investigated. Moreover, nonlinear optical measurements showed that 4 displayed a second‐harmonic‐generation (SHG) response of 0.7 times of that for urea.  相似文献   

10.
The title mononuclear [Cu(sq)(phen)2]·3H2O complex [sq is squarate (C4O4) and phen is 1,10‐phenanthroline (C12H8N2)] has been synthesized and the structure consists of a neutral mononuclear [Cu(sq)(phen)2] unit and three solvate water mol­ecules. The CuII ion has distorted square‐pyramidal coordination geometry, comprised of one carboxyl­ate O atom from a monodentate squarate ligand and four N atoms from two chelating phen ligands. An extensive three‐dimensional network of OW—H⋯O/OW hydrogen bonds, face‐to‐face π–­π interactions between the 1,10‐phenanthroline aromatic rings and a weak π–ring interaction are responsible for crystal stabilization.  相似文献   

11.
A series of polyacylhydrazones derived from condensing diacetyl with oxalic, malonic, succinic, glutaric and adipic dihydrazides was prepared, characterized and reacted with copper(II) and nickel(II) acetate to give metallopolymers of general formula [Cu2(L)(AcO)2(OH)(H2O)2] · yH2O n , [Cu(L)(AcO)(HO)(H2O)] · yH2O n , [Ni2(L)(AcO)2-(HO)2] · yH2O n and [Ni(L)(AcO)(HO)] · yH2O n , where L refers to the neutral dihydrazone unit. Magnetic susceptibility measurements in the 4.2–300 K range indicate significant antiferromagnetic coupling between the CuII centers in the metallopolymers, which may indicate the presence of two polymer chains crosslinked by bis--acetatocopper(II) bridges. Based on i.r., spectral and magnetic measurements, tentative structures of the CuII and NiII metallopolymers have been proposed. The dihydrazone units in these polymers are coordinated to the metal(II) via the azomethine nitrogen(s) whereas the amide group remains uncoordinated. Each CuII is penta-coordinated in a distorted square pyramidal environment and is neutralized by one bridged acetate and a hydroxide ion, while the fifth coordination site is occupied by a water molecule. In the nickel(II) metallopolymers the metal ions are in a tetrahedral environment and are coordinated to azomethine nitrogen, two bridged acetate oxygens and to the hydroxide ion.  相似文献   

12.
The synthesis, reduction, optical and e.p.r. spectral properties of a series of new binuclear copper(II) complexes, containing bridging moieties (OH, MeCO2 , NO2 , and N3 ), with new proline-based binuclear pentadentate Mannich base ligands is described. The ligands are: 2,6-bis[(prolin-1-yl)methyl]4-bromophenol [H3L1], 2,6-bis[(prolin-1-yl)methyl]4-t-butylphenol [H3L2] and 2,6-bis[(prolin-1-yl)methyl]4-methoxyphenol [H3L3]. The exogenous bridging complexes thus prepared were hydroxo: [Cu2L1(OH)(H2O)2] · H2O (1a), [Cu2L2(OH)(H2O)2] · H2O (1b), [Cu2L3(OH)(H2O)2] · H2O (1c), acetato [Cu2L1(OAc)] · H2O (2a), [Cu2L2(OAc)] · H2O (2b), [Cu2L3(OAc)] · H2O (2c), nitrito [Cu2L1(NO2)(H2O)2] · H2O (3a), [Cu2L2(NO2)(H2O)2] · H2O (3b), [Cu2L3(NO2)(H2O)2] · H2O (3c) and azido [Cu2L1(N3)(H2O)2] · H2O (4a), [Cu2L2(N3)(H2O)2] · H2O (4b) and [Cu2L3(N3)(H2O)2] · H2O (4c). The complexes were characterized by elemental analysis and by spectroscopy. They exhibit resolved copper hyperfine e.p.r. spectra at room temperature, indicating the presence of weak antiferromagnetic coupling between the copper atoms. The strength of the antiferromagnetic coupling lies in the order: NO2 N3 OH OAc. Cyclic voltammetry revealed the presence of two redox couples CuIICuII CuIICuI CuICuI. The conproportionality constant K con for the mixed valent CuIICuI species for all the complexes have been determined electrochemically.  相似文献   

13.
Conclusion The x-ray structural results confirm what has been ascertained by thermodynamic and spectroscopic data in aqueous solution(7). It is evident that the addition of pyridine to the solution containing the mixed species [Cu(bipy)(pydca)(H2O)] leads to the substitution of a water molecule directly bound to copper(II) ion by a pyridine molecule. This experiment also demonstrated the presence of a water molecule in the equatorial plane of the complex.The subsequent diffractometric study on single crystals derived from the copper(II)/bipy/pydca system revealed the existence in the solid state of [Cu2(bipy)2(pydca)2] · 4H2O. Thus the pydca dianion, instead of forming the statistically favoured mixed complex [Cu(bipy)(pydca)], gives rise to crystals containing two different copper(II) environments: [Cu(pydca)2]2– and [Cu(bipy)2]2+, linked by O-carboxylate bridges. The facility with which [Cu(bipy)(pydca)(py)] can be obtained shows that the addition of pyridine prevents the formation of polynuclear species.  相似文献   

14.
Summary Reactions of bis(1-oxopyridine-2-thione) NiII or CuII with 2,2-bipyridine (bipy) or 1,10-phenanthroline (phen) yield complexes of stoichiometry: Ni(C5H4NOS)2L {L = bipy, two isomers: (1) and (2), L = phen, one isomer (3)} and Cu(C5H4NOS)2(phen)·0.75CHCl3 (4). The spectroscopy (i.r., u.v.-vis., e.s.r.) and magnetism studies of the above complexes are described. On the basis of conductivity, the CuII-phen complex has been formulated as [Cu(C5H4NOS)(phen)2][Cu(C5H4NOS)3]·1.5CHCl3 (4). The vis. absorption spectra support similar octahedral structures for the minor bipy isomer (2) and for the NiII-phen complex [(3)], whereas the major isomer [(1)] has a different structure. The e.s.r. spectrum of the CuII-phen complex (4) is commensurate with an elongated octahedral structure. New methods for the preparation and spectroscopy of M(C5H4NOS)2 (M = Mn, Ni, Cu or Zn) compounds have been investigated.  相似文献   

15.
A novel polymeric complex, [Mn(phen)(pdc)] (phen=1,10-phenanthroline, H2pdc=2,5-pyridinedicarboxylic acid) has been synthesized from the hydrothermal reaction system of H2pdc, phen, MnO2, and H2O. [Mn(phen)(pdc)] is characteristic of an edge-sharing dinuclear MnII structure unit bridged by pdc, leading to a 2-D framework whose stacking is based on weak H-bond interaction. The temperature dependence of the magnetic susceptibility for [Mn(phen)(pdc)] indicates antiferromagnetic coupling [J = −2.76(4) cm−1] between the adjacent paramagnetic MnII ions.  相似文献   

16.
The use of the [FeIII(AA)(CN)4]? complex anion as metalloligand towards the preformed [CuII(valpn)LnIII]3+ or [NiII(valpn)LnIII]3+ heterometallic complex cations (AA=2,2′‐bipyridine (bipy) and 1,10‐phenathroline (phen); H2valpn=1,3‐propanediyl‐bis(2‐iminomethylene‐6‐methoxyphenol)) allowed the preparation of two families of heterotrimetallic complexes: three isostructural 1D coordination polymers of general formula {[CuII(valpn)LnIII(H2O)3(μ‐NC)2FeIII(phen)(CN)2 {(μ‐NC)FeIII(phen)(CN)3}]NO3 ? 7 H2O}n (Ln=Gd ( 1 ), Tb ( 2 ), and Dy ( 3 )) and the trinuclear complex [CuII(valpn)LaIII(OH2)3(O2NO)(μ‐NC)FeIII(phen)(CN)3] ? NO3 ? H2O ? CH3CN ( 4 ) were obtained with the [CuII(valpn)LnIII]3+ assembling unit, whereas three isostructural heterotrimetallic 2D networks, {[NiII(valpn)LnIII(ONO2)2(H2O)(μ‐NC)3FeIII(bipy)(CN)] ? 2 H2O ? 2 CH3CN}n (Ln=Gd ( 5 ), Tb ( 6 ), and Dy ( 7 )) resulted with the related [NiII(valpn)LnIII]3+ precursor. The crystal structure of compound 4 consists of discrete heterotrimetallic complex cations, [CuII(valpn)LaIII(OH2)3(O2NO)(μ‐NC)FeIII(phen)(CN)3]+, nitrate counterions, and non‐coordinate water and acetonitrile molecules. The heteroleptic {FeIII(bipy)(CN)4} moiety in 5 – 7 acts as a tris‐monodentate ligand towards three {NiII(valpn)LnIII} binuclear nodes leading to heterotrimetallic 2D networks. The ferromagnetic interaction through the diphenoxo bridge in the CuII?LnIII ( 1 – 3 ) and NiII?LnIII ( 5 – 7 ) units, as well as through the single cyanide bridge between the FeIII and either NiII ( 5 – 7 ) or CuII ( 4 ) account for the overall ferromagnetic behavior observed in 1 – 7 . DFT‐type calculations were performed to substantiate the magnetic interactions in 1 , 4 , and 5 . Interestingly, compound 6 exhibits slow relaxation of the magnetization with maxima of the out‐of‐phase ac signals below 4.0 K in the lack of a dc field, the values of the pre‐exponential factor (τo) and energy barrier (Ea) through the Arrhenius equation being 2.0×10?12 s and 29.1 cm?1, respectively. In the case of 7 , the ferromagnetic interactions through the double phenoxo (NiII–DyIII) and single cyanide (FeIII–NiII) pathways are masked by the depopulation of the Stark levels of the DyIII ion, this feature most likely accounting for the continuous decrease of χM T upon cooling observed for this last compound.  相似文献   

17.
Summary Complexes ofo-hydroxyacetophenone-2-furoylhydrazone, H2L, of the types M(H2L)C12 · nH2O [Mn = CoII, n=0; NiII, n=2]; Cu(HL)Cl, M(HL)2 [M = VIVO, CoII, NiII or CuII] and M(L)(H2O)n [M = CoII or NiII, n=2; M = CuII, n=0] have been prepared and characterized by elemental analyses, molar conductance, magnetic susceptibility, visible, e.s.r. and i.r. spectral studies. The different modes of ligand chelation and the stereochemistry around the metal ions are discussed.  相似文献   

18.
Four new complexes of [Cu(bpm)(ox)(H2O)] ( 1 ), [Cu(tpd)(dca)(H2O)] ( 2 ), [Cu(bppz)(N3)2] ( 3 ), and [Cu(bpm)21,3‐N3)(N3)] ( 4 ) (bpm = 2,2′‐bipyrimidine, bppz = 2,3‐bis(2‐pyridyl)pyrazine, tpd = 4‐terpyridone, dca = dicyanamide, ox = oxalate) have been prepared and characterized by X‐ray single‐crystal analysis and variable‐temperature magnetic measurements. Compounds 1–4 are essentially mononuclear Cu(II) complexes. However, in complex 1 , Cu(II) it was found that intermolecular hydrogen bonding through between H2O and ox formed 1‐D chain structure. In complex 2 it was found that the hydrogen bonding between H2O and tpd of the next molecule led to for a binuclear Cu(II) complex. In complex 3 , two nitrogen atoms, one of the pyridyl group of bppz and one of N3? ligands, are weakly coordinated to neighbor Cu(II) ion thus leading to formation of a 1‐D chain structure. In complex 4 , one nitrogen atom of terminated N3? is weakly coordinated to the neighbor Cu(II) site to form a 1‐D polymeric structure. The magnetic susceptibility measurements indicate that complex 1 and 4 exhibit a weak antiferromagnetic interaction whereas a ferromagnetic coupling has been established for complexes 2 and 3 .  相似文献   

19.
Two new copper(II) complexes of [Cu(Ofloxacin)(phen)(H2O)] · (NO3) · 2H2O and [Cu(Levofloxacin)(phen)(H2O)] · (NO3) · 2H2O were obtained and their structures were studies. Both ligands and complexes were assayed against gram-positive and gram-negative bacteria by the in vitro doubling dilutions method. The inhibitory effect of the ligands and complexes on the leukemia HL-60 cell line were measured with the MTT assay method and the liver cancer HePG-2 cell line measured by the SRB method. The results indicated that the complexes have stronger inhibitory effect on HL-60 than on HePG-2. The complex [Cu(Levofloxacin)(phen)(H2O)] · (NO3) · 2H2O (I) has stronger effect on HL-60 than the complex (Cu(Ofloxacin)(phen)(H2O)] · (NO3) · 2H2O (II). The text was submitted by the authors in English.  相似文献   

20.
A new series of hexacoordinate cobalt(II), nickel(II) and copper(II) complexes of 5-(2-carboxyphenylazo)-2-thiohydantoin HL having formulae [LM(OAc)(H2O)2] · nH2O (M = CoII, CuII and NiII), [LMCl(H2O)2] · nH2O (M = CoII and NiII), [LCuCl(H2O)]2 · 2H2O, [LCu(H2O)3](ClO4) and [LCu(HSO4)(H2O)2] were isolated and characterized by elemental analyses, molar conductivities and magnetic susceptibilities, and by i.r., electronic and e.s.r. spectral measurements, as well as by thermal (t.g. and d.t.g.) analyses. The i.r. spectra indicate that the ligand HL behaves as a monobasic tridentate towards the three divalent metal ions via an azo-N, carboxylate-O and thiohydantoin-O atom. The magnetic moments and electronic spectral data suggest an octahedral geometry for CoII complexes, distorted octahedral geometry for both NiII and CuII complexes with a dimeric structure for [LCuCl(H2O)]2 · 2H2O through bridged chloro ligands. The X-band e.s.r. spectra reveal an axial symmetry for the copper(II) complexes with unsymmetrical Ms = ± 1 signal and G-parameter less than four for the dimeric [LCuCl(H2O)]2 · 2H2O. The thermogravimetry (t.g. and d.t.g.) of some complexes were studied; the order and kinetic parameters of their thermal degradation were determined by applying Coats–Redfern method and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号