首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The P,O‐chelated shell higher olefin process (SHOP) type nickel complexes are practical homogeneous catalysts for the industrial preparation of linear low‐carbon α‐olefins from ethylene. We describes that a facile synthetic route enables the modulation of steric hindrance and electronic nature of SHOP‐type nickel complexes. A series of sterically bulky SHOP‐type nickel complexes with variable electronic nature, {[4‐R‐C6H4C(O) = C‐PArPh]NiPh (PPh3); Ar = 2‐[2′,6′‐(OMe)2C6H3]C6H4; R = H ( Ni1 ); R = OMe ( Ni2 ); R = CF3 ( Ni3 )}, were prepared and used as single component catalysts toward ethylene polymerization without using any phosphine scavenger. These nickel catalysts exhibit high thermal stability during ethylene polymerization and result in highly crystalline linear α‐olefinic solid polymer. The catalytic performance of the SHOP‐type nickel complexes was significantly improved by introducing a bulky ortho‐biphenyl group on the phosphorous atom or an electron‐withdrawing trifluoromethyl on the backbone of the ligand, indicating steric and electronic effects play critical roles in SHOP‐type nickel complexes catalyzed ethylene polymerization.  相似文献   

2.
Two new neodymium complexes, [Nd2(abglyH)6(2,2′-bipy)2(H2O)2] · 4H2O 1 and {[Nd(abglyH)3(H2O)2] · (4,4′-bipy) · 7H2O}n 2 (abglyH2 = N-P-acetamidobenzenesulfonyl-glycine acid, 2,2′-bipy = 2,2′-bipyridine, 4,4′-bipy = 4,4′-bipyridine), have been synthesized and their structures have been measured by X-ray crystallography. In 1, nine-coordinated Nd(III) ions are bridged by two synsyn bidentate and two tridentate bridging carboxylate groups from four different abglyH anions to form dinuclear motifs, which are further connected into a 3-D supramolecular framework via hydrogen bonds between the binuclear motifs and the uncoordinated water molecules. In 2, eight-coordinated Nd(III) ions are linked by six carboxylate groups adopting a synsyn bidentate bridging fashion to form a 1-D inorganic–organic alternating linear chain. These polymeric chains generate microchannels extending along the a direction, and these cavities are occupied by discrete tetradecameric water clusters, which interact with their surroundings and finally furnish the 3-D supramolecular network via hydrogen bonds. At the same time, π–π stacking interactions between benzene rings from abglyH anions also play an important role in stabilizing the network.  相似文献   

3.
Two novel amino acids imine ligands (H2L1 and H2L2) have been synthesized using green condensation reaction from 2‐[3‐Amino‐5‐(2‐hydroxy‐phenyl)‐5‐methyl‐1,5‐dihydro‐[1, 2, 4]triazol‐4‐yl]‐3‐(1H‐indol‐3‐yl)‐propionic acid with benzaldehyde/p‐flouro benzaldehyde (1:1 molar ratio) in the presence of lemon juice as a natural acidic catalyst in aqueous medium. Their transition metal complexes have been prepared in a molar ratio (1:1). Characterization of the ligands and complexes using elemental analysis, spectroscopic studies, 1HNMR, 13CNMR, and thermal analysis has been reported. E*, ΔH*, ΔS* and ΔG* thermodynamic parameters, were calculated to throw more light on the nature of changes accompanying the thermal decomposition process of these complexes. The molar conductance measurement of metal complexes showed nonelectrolyte behavior. The metal complexes of the two ligands have tetrahedral geometry with a general molecular structure [M(H2L)Xn], where [(M = Mn (II), Co (II), Cu (II) and Zn (II), X = Cl, n = 2]; M = VO (II), X = SO4, n = 1] for H2L1. [M = Co (II), Cu (II), Zn (II)] for H2L2. Antibacterial activity of the complexes against (Bacillis subtilis, Micrococcus luteus, Escherichia coli), also antifungal activity against (Aspergillus niger, Candida Glabarta, Saccharomyces cerevisiae) have been screened. The results showed that all complexes have antimicrobial activity higher than free ligands. Molecular docking studies results showed that, all the synthesized compounds having minimum binding energy and have good affinity toward the active pocket, thus, they may be considered as good inhibitor of targeting PDB code: 1SC7 (Human DNA Topo‐isomerase I).  相似文献   

4.
Hydrazine forms two different types of complexes with divalent metal ions and pyromellitic acid (H4pml) in aqueous medium: (i) hydrazinium complexes of formulae, (N2H5)2M(pml)·xH2O, where x = 3 for M=Ni and x = 4 for M=Co or Zn, and (N2H5)2Mn(H2pml)2, at pH 4.5, (ii) neutral hydrazine complexes with formulae, M2(pml)(N2H4) n ·xH2O where M=Co or Ni when n = 4 and x = 5 or 4 and M=Zn or Cd when n = 2, and x = 4 or 3 at pH 7, and M(H2pml)(N2H4xH2O where x = 4; M=Cu and x = 0; M=Hg, at pH 3, 7.5, respectively. All the complexes are insoluble in water, alcohol and ether. The N–N stretching frequency (990–1,007 cm−1 for coordinated hydrazinium ion and 956–985 cm−1 for bridged neutral hydrazine) indicates the nature of hydrazine present in the complexes. Simultaneously TG-DTA analysis indicates that hydrazinium complexes undergo dehydration and dehydrazination in a single step endothermally in the range of 289–300 °C whereas neutral hydrazine complexes undergo endothermic dehydration (~100 °C) followed by exothermic dehydrazination in the temperature range, 253–332 °C. The anhydrous metal carboxylates further decompose exothermally to leave the respective metal oxides or metal carbonates except zinc, which gives its oxalate as the end product. X-ray powder patterns indicate that even the complexes with the same formulation possess no isomorphism.  相似文献   

5.
Three new metal coordination complexes, namely [Co(BPY)2(H2O)2](BPY)(BS)2(H2O)4 ( 1 ), [Co(BPY)2(H2O)4](ABS)2(H2O)2 ( 2 ) and [Co(BPY)(H2O)4](MBS)2 ( 3 ) (BPY = 4,4′‐bipyridine, BS = phenylsulfonic acid, ABS = p‐aminobenzenesulfonic acid, MBS = p‐methylbenzenesulfonic acid), were obtained under hydrothermal conditions. Complexes 1 , 2 , 3 were structurally characterized using single‐crystal X‐ray diffraction and infrared spectroscopy. All of them display low‐dimensional motifs: complex 1 displays a two‐dimensional structure; and complexes 2 and 3 exhibit a one‐dimensional tape structure. Through strong intermolecular hydrogen bonding interactions and weak packing interactions, all of them further stack to generate a three‐dimensional supramolecular architecture. Catalysts 1 , 2 , 3 were involved in the green synthesis of a variety of 3,4‐dihydropyrimidin‐2(1H)‐ones under solvent‐free conditions through Biginelli reactions. The corresponding catalytic product was obtained in quantitative yields (99%) under eco‐friendly synthesis conditions for the variety of reactions. Catalysts 1 , 2 , 3 exhibit excellent efficiency for the desired product, and their catalytic performance shows the following order: 2  >  1  ≈  3 , which can be ascribed to the hydrophobic interactions of different phenylsulfonate groups. The catalytic performance for the Biginelli reaction is not only dependent on the selected solvents, but also inversely proportional to the polarities of the solvents. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
The halogen bonding of furan???XY and thiophene???XY (X=Cl, Br; Y=F, Cl, Br), involving σ‐ and π‐type interactions, was studied by using MP2 calculations and quantum theory of “atoms in molecules” (QTAIM) studies. The negative electrostatic potentials of furan and thiophene, as well as the most positive electrostatic potential (VS,max) on the surface of the interacting X atom determined the geometries of the complexes. Linear relationships were found between interaction energy and VS,max of the X atom, indicating that electrostatic interactions play an important role in these halogen‐bonding interactions. The halogen‐bonding interactions in furan???XY and thiophene???XY are weak, “closed‐shell” noncovalent interactions. The linear relationship of topological properties, energy properties, and the integration of interatomic surfaces versus VS,max of atom X demonstrate the importance of the positive σ hole, as reflected by the computed VS,max of atom X, in determining the topological properties of the halogen bonds.  相似文献   

7.
Quantum chemical calculations have been performed at CCSD(T)/def2‐TZVP level to investigate the strength and nature of interactions of ammonia (NH3), water (H2O), and benzene (C6H6) with various metal ions and validated with the available experimental results. For all the considered metal ions, a preference for C6H6 is observed for dicationic ions whereas the monocationic ions prefer to bind with NH3. Density Functional Theory–Symmetry Adapted Perturbation Theory (DFT‐SAPT) analysis has been employed at PBE0AC/def2‐TZVP level on these complexes (closed shell), to understand the various energy terms contributing to binding energy (BE). The DFT‐SAPT result shows that for the metal ion complexes with H2O electrostatic component is the major contributor to the BE whereas, for C6H6 complexes polarization component is dominant, except in the case of alkali metal ion complexes. However, in case of NH3 complexes, electrostatic component is dominant for s‐block metal ions, whereas, for the d and p‐block metal ion complexes both electrostatic and polarization components are important. The geometry (M+–N and M+–O distance for NH3 and H2O complexes respectively, and cation–π distance for C6H6 complexes) for the alkali and alkaline earth metal ion complexes increases down the group. Natural population analysis performed on NH3, H2O, and C6H6 complexes shows that the charge transfer to metal ions is higher in case of C6H6 complexes. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
Half-titanocene is well-known as an excellent catalyst for the preparation of SPS (syndiotactic polystyrene) when activated with methylaluminoxane (MAO). Dinuclear half-sandwich complexes of titanium bearing a xylene bridge, (TiCl2L)2{(μ-η5, η5-C5H4-ortho-(CH2–C6H4–CH2)C5H4}, (4 (L = Cl), 7 (L = O-2,6-iPr2C6H3)) and (TiCl2L)2{(μ-η5, η5-C5H4-meta-(CH2–C6H4–CH2)C5H4} (5 (L = Cl), 8(L = O-2,6-iPr2C6H3)), have been successfully synthesized and introduced for styrene polymerization. The catalysts were characterized by 1H- and 13C NMR, and elemental analysis. These catalysts were found to be effective in forming SPS in combination with MAO. The activities of the catalysts with rigid ortho- and meta-xylene bridges were higher than those of catalysts with flexible pentamethylene bridges. The catalytic activity of four dinuclear half-titanocenes increased in the order of 4 < 5 < 7 < 8. This result displays that the meta-xylene bridged catalyst is more active than the ortho-xylene bridged and that the aryloxo group at the titanium center is more effective at promoting catalyst activity compared to the chloride group at the titanium center. Temperature and ratio of [Al]:[Ti] had significant effects on catalytic activity. Polymerizations were conducted at three different temperatures (25, 40, and 70 °C) with variation in the [Al]:[Ti] ratio from 2000 to 4000. It was observed that activity of the catalysts increased with increasing temperature, as well as higher [Al]:[Ti]. Different xylene linkage patterns (ortho and meta) were recognized to be a principal factor leading to the characteristics of the dinuclear catalyst due to its different spatial arrangement, causing dissimilar intramolecular interactions between the two active sites.  相似文献   

9.
Heteroaromatic hydrocarbons (including thiophene [TH], benzothiophene [BT], and dibenzothiophene [DBT]) do not have apparent functional groups capable of interacting with the silica‐oxide tetrahedral surface of kaolinite. Thus, question remains concerning what would be the driving forces for the adsorption. Here, the Si13O37H22 cluster model for the surface is constructed, and the interactions of the surface with three heteroaromatic compounds are studied at the MP2/6‐31G(d,p)//B3LYP/6‐31G(d) level. The computed properties characterizing the complexes include optimized structural parameters, electron density characteristics (the ρ and ? 2ρ values for C? H…O bonds), adsorption energies, vibration frequencies and electrostatic potential maps. The results suggest that the C? H…O hydrogen bonding interactions between the heteroaromatic compounds and tetrahedral surface are likely among the important interactions for the adsorption. The order of the stability of the cluster model of kaolinite complexed with the heteroaromatic compounds is found to be 3Si? O? DBT > 3Si? O? BT > 3Si? O? TH based on the calculations.  相似文献   

10.
Two new complexes having general formula VOL2·nH2O [(1) L: 5-hydroxyflavone, n = 1; (2) L: chrysin, n = 4] were synthesized and characterized. Based on IR and electronic data we concluded that studied flavones act as bidentate ligands in complexes with metallic ion coordinated in a square-pyramidal stereochemistry. The thermal analysis (TG, DTA) elucidated the composition and also the number and nature of the water molecules. The thermal behavior also indicated strong interactions between oxovanadium (IV) and these oxygen donor ligands.  相似文献   

11.
Three novel copper(II) complexes, [Cu(Gly‐l ‐Val)(HPBM)(H2O)]·ClO4·H2O ( 1 ), [Cu(Gly‐l ‐Val)(TBZ)(H2O)]·ClO4 ( 2 ) and [Cu(Gly‐l ‐Val)(PBO)(H2O)]·ClO4 ( 3 ) (Gly‐l ‐Val = glycyl‐l ‐valine anion, HPBM = 5‐methyl‐2‐(2′‐pyridyl)benzimidazole, TBZ = 2‐(4′‐thiazolyl)benzimidazole, PBO = 2‐(2′‐pyridyl)benzoxazole), have been prepared and characterized with elemental analyses, conductivity measurements as well as various spectroscopic techniques. The interactions of these copper complexes with calf thymus DNA were explored using UV–visible, fluorescence, circular dichroism, thermal denaturation, viscosity and docking analyses methods. The experimental results showed that all three complexes could bind to DNA via an intercalative mode. Moreover, the cytotoxic effects were evaluated using the MTT method, and the antimicrobial activity of these complexes was tested against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. The results showed that the activities are consistent with their DNA binding abilities, following the order of 1 > 2 > 3 .  相似文献   

12.
The nature of C–HM agostic interactions in model metal complexes [M2+(CH2CH3)(PH3)nCl] (where M = Sc, Ti, V, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn; n = 1, 2, 3, 4) was studied with the natural bond orbital analysis (NBO) approach using density functional theory (DFT) optimized geometries at the B3LYP/6-31G(d,p) level of theory. The effect of nature of metal, coordination number, oxidation state and ligand field effects on the agostic interaction is examined. A set of 20 crystal structures of organometallic complexes taken from the Cambridge Structural Database (CSD) was studied computationally employing AIM theory and NBO analysis, and the applicability of these methods was critically accessed in demarcating the two types of interaction.  相似文献   

13.
The monomeric cis-dioxomolybdenum(VI) complexes [MoO2(oep-saldpen)] and [MoO2Cl2(oep-H2saldpen)], with a tetradentate [N2(imine)O2] and bidentate [N2(imine)] salen-type ligand functionalised with two pyrrole derivative pendant arms [oep-H2saldpen = 1,2-diphenylethylenebis(3-oxyethylpyrrole)salicylideneimine], were synthesised and characterised by 1H NMR, IR and Raman spectroscopy. The solid-state structure of the free ligand oep-H2saldpen was determined by single crystal X-ray diffraction. Assignment of the vibrational spectra of the molybdenum complexes was supported by carrying out ab initio calculations for the possible isomers using [MoO2(salen)] and [MoO2Cl2(H2salen)] as model compounds [H2salen = N,N′-ethylenebis(salicylideneimine)]. The oep-saldpen complexes were examined as catalysts for the epoxidation of cyclooctene, (R)-(+)-limonene, styrene, α-pinene, and cis and trans-β-methylstyrene, with tert-butyl hydroperoxide as the oxidant. Both complexes exhibited high selectivity for the epoxidation reaction, with the bis(chloro) complex being always the more active of the two.  相似文献   

14.
Three isomorphous coordination polymers of general formula {[M(H2bna)·(DMF)2·(H2O)2]·DMF}n (M = Co for 1, Mn for 2, Ni for 3, respectively, where H4bna = 2,2′-dihydroxy-[1,1′]-binaphthalene-3,3′-dicarboxylate) were synthesized under solvothermal conditions and characterized by FTIR, single crystal X-ray diffraction, thermogravimetric analysis, and X-ray power diffraction analysis. All three polymers crystallize in the same monoclinic space group P21/n. The complexes are assembled into 1D helical chains, and each adjacent helical chain of the same chirality is further connected to form a chiral layer by hydrogen bond interactions. The layers are packed in alternating left-(M) and right-handed (P) chirality arrays. Magnetic studies reveal the presence of antiferromagnetic coupling interactions in complexes 1 and 2.  相似文献   

15.
Reactions of ligand 5-(1H-imidazol-4-yl)methylaminoisophthalic acid (H3L) with varied lanthanide metal salts led to the formation of five scalelike 2D layered complexes {[Ln(H2L)(HL)(H2O)2]·H2O}n [Ln(III) = Pr(III) (1), Nd(III) (2), Sm(III) (3), Gd(III) (4), Tb(III) (5)]. The single crystal X-ray diffraction analyses revealed that five complexes crystallized in the same monoclinic space group C2/c are isomorphous and isostructural, and the 2D networks are further connected by hydrogen bonds and π–π interactions resulting in formation of 3D structures. Investigations on the visible luminescent property of the complexes demonstrate that compounds 3 and 5 show characteristic emissions of Sm(III) and Tb(III) in the solid state at room temperature, respectively.  相似文献   

16.
Three new reduced amino-acid Schiff base complexes, [Co(HL)2(H2O)2] · 4H2O (1), [Cu(HL)2(H2O)2] · 2H2O (2), and [Cd(HL)2(H2O)3] · 2H2O (3), where H2L is the reduced Schiff-base ligand derived from the condensation of N-(4-hydroxybenzaldehyde) with L-glycine, have been synthesized and characterized by physico-chemical and spectroscopic methods. In these complexes, the two bidentate monoanionic Schiff base ligands coordinate the metal center through the secondary amine N atom and the carboxylate O atom. Water ligands complete a distorted octahedral (1, 2) or a pentagonal bipyramidal coordination geometry (3) around each metal center. The binding interactions of the complexes with CT-DNA have been investigated by UV–visible spectrophotometry and fluorescence quenching methods. The results show that these complexes bind to CT-DNA with an intercalative mode. In addition, DNA cleavage experiments have been also investigated by agarose gel electrophoresis. Complexes 13 show oxidative DNA cleavage activity in the presence of H2O2/sodium ascorbate and the reactive oxygen species responsible for the DNA cleavage is most likely singlet oxygen. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
4-Chloro-2-methoxybenzoates of heavy lanthanides(III) and yttrium(III) were obtained as mono-, di-, tri-or tetrahydrates with metal to ligand ratio of 1:3 and general formula Ln(C8H6ClO3)3·nH2O, where n=1 for Ln=Er, n=2 for Ln=Tb, Dy, Tm, Y, n=3 for Ln=Ho and n=4 for Yb and Lu. The complexes were characterized by elemental analysis, FTIR spectra, TG, DTA and DSC curves, X-ray diffraction and magnetic measurements. The carboxylate group appears to be a symmetrical bidentate chelating ligand. All complexes are polycrystalline compounds. The values of enthalpy, ΔH, of the dehydration process for analysed complexes were also determined. The solubilities of heavy lanthanide(III) 4-chloro-2-methoxybenzoates in water at 293 K are of the order of 10−4 mol dm−3. The magnetic moments were determined over the range of 76–303 K. The results indicate that there is no influence of the ligand field of 4f electrons on lanthanide ions and the metal ligand bonding is mainly electrostatic in nature.  相似文献   

18.
Density functional calculations at the BP86/TZ2P level are reported for the pseudo-octahedral heteroarene complexes M(η1-EC5H5)6 and for the sandwich complexes M(η6-EC5H5)2 (M = Cr, Mo, W; E = N, P, As, Sb, Bi). The complexes M(CO)6 and M(η6-C6H6)2 have been calculated for comparison. The nature of the metal–ligand interactions was analyzed with the EDA (energy decomposition analysis) method. The calculated bond dissociation energies (BDE) of M(η1-EC5H5)6 have the order for E = P > As > N > Sb ? Bi and for M = Cr < Mo < W. All hexaheteroarenes bind more weakly than CO in M(CO)6. Except for pyridine, which is the weakest η6-bonded ligand, the trend in the BDE of the M(η6-EC5H5)2 complexes is opposite to the trend of the M(η1-EC5H5)6 complexes NC5H5 < PC5H5 < AsC5H5 < SbC5H5 < BiC5H5. The opposite trend is explained with the different binding modes in M(η6-EC5H5)2 and M(η1-EC5H5)6. The bonding in the former complexes mainly takes place through the π electrons of the ligand which are delocalized over the ring atoms while the bonding in the latter takes place through the lone-pair electrons of the heteroatoms E. The Lewis basicity of the group-15 heterobenzenes EC5H5 becomes weaker for the heavier elements E. The occupied π orbitals of the heterobenzene ring become gradually more polarized toward the five carbon atoms in the heavier arenes EC5H5 which induces stronger metal-carbon bonds in M(η6-EC5H5)2 and weaker metal-E bonds. The EDA calculations show that the nature of the M-EC5H5 bonding in M(η1-EC5H5)6 is similar to the M–CO bonding in M(CO)6. Both types of bonds have a slightly more covalent than electrostatic character. The π orbital interactions in the chromium and molybdenum complexes of CO and heterobenzene are more important than the σ interactions. This holds true also for the tungsten complexes of CO and the lighter heteroarenes while the σ- and π-bonding in the heavier W(η1-EC5H5)6 species have similar strength. The EDA results also show that the nature of the bonding in the sandwich complexes M(η6-EC5H5)2 is very similar to the bonding in the bisbenzene complexes M(η6-C6H6)2. The orbital interactions contribute for all metals and all arene ligands about 60% of the attractive interactions while the electrostatic attraction contributes about 40%. The largest contribution to the orbital term comes always from the δ orbitals. The calculations predict that the relative stability of the sandwich complexes M(η6-EC5H5)2 over the octahedral species M(η1-EC5H5)6 increases when E becomes heavier and it increases from W to Mo to Cr when E = N, P, As.  相似文献   

19.
Four new lanthanide complexes [Ln(4‐EBA)3(5,5′‐DM‐2,2′‐bipy)]2·2C2H5OH (Ln = Ho ( 1 ), Tb ( 2 ), Er ( 3 )); [Ln(4‐EBA)3(4‐EBAH)(5,5′‐DM‐2,2′‐bipy)]2 (Ln = Eu( 4 ); 4‐EBA =4‐ethylbenzoate; 5,5′‐DM‐2,2′‐bipy =5,5′‐dimethy‐2,2′‐bipyridine; 4‐EBAH = 4‐ethylbenzoic acid) have been synthesized and characterized by elemental analysis and IR spectra. The single crystal results reveal that complexes 1 – 3 are isostructural. It is worth noting that the mole ratios of the carboxylate ligands and neutral ligands is 4:1 in complex 4 , which is different from the former and has been rarely reported. Nevertheless, all complexes are connected to form 1D chain by π ···π wake staking interactions. Additionally, the complexes 2 (Tb(III)) and 4 (Eu(III)) exhibit characteristic luminescent properties, indicating that ligands can be used as sensitizing chromophore in these systems. The thermal decomposition mechanism of the complexes has been investigated by TG/DSC–FTIR technology. Stacked plots of the FTIR spectra of the evolved gases show complexes broken down into H2O, CO2, and other gaseous molecules as well as the gaseous organic fragments. The studies on bacteriostatic activities of complexes show that four complexes have good bacteriostatic activities against Candida albicans but no bacteriostatic activity on Escherichia coli , and Staphylococcus aureus . Additionally, the complexes 1 to 3 have better bacteriostatic activities on Candida albicans than complex 4 .  相似文献   

20.
Abstract  Two new complexes, [Ag(L)2](NO3) · (H2O) (1) and [Co(L)2Cl2] (2) [L = 1-(imidazol-1-yl-methyl)-benzotriazole], have been synthesized and structurally characterized by X-ray diffraction techniques. In complex (1), the Ag(I) atom adopts a linear coordination geometry involving the imidazole nitrogens of two ligands. The [Ag(L)2] units are developed into a three-dimensional structure by intermolecular hydrogen bonds, π–π interactions, and Ag···O interactions. In complex (2), the Co(II) atom is in a distorted tetrahedral environment with two imidazole nitrogens and two chloride ligands. The [Co(L)2Cl2] units are assembled into a three-dimensional structure by intermolecular hydrogen bonds and π–π interactions. The bioactivities of both complexes have been studied, and the results indicate that complex (1) exhibits excellent radical-scavenging (RS) and fungicidal (FG) activities while complex (2) only has weak fungicidal activity. Graphical abstracts   Synthesis, crystal structures and biological activities of silver(I) and cobalt(II) complexes with an azole derivative ligand. Chang-Xue An, Xin-Li Han, Peng-Bang Wang, Zhi-Hui Zhang*, Hai-Ke Zhang and Zhi-Jin Fan Two novel complexes, [Ag(L)2](NO3) · (H2O) (1) and [Co(L)2Cl2] (2) [L = 1-(imidazol-1-yl-methyl)-benzotriazole] have been synthesized and structurally characterized. The molecules of complexes (1) and (2) are extended to 2-D and 3-D structures by the non-coordinated bonds. The ligand and complex (1) exhibit excellent radical-scavenging and fungicidal activities. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号