首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Three-dimensional large-scale motions of a rotating inviscid incompressible stratified ideal electroconducting fluid in a spherical equatorial latitude belt are studied. The mathematical model of this physical process is a closed system of partial differential equations consisting of hydrodynamic equations, which take into account the Earth rotation and the Lorentz force, and corresponding equations of magnetic dynamics with appropriate boundary conditions. An analytical solution of the system is constructed in the approximation of an equatorial β-plane, which describes propagation of lowamplitude waves.  相似文献   

2.
A heterogeneous mathematical model is formulated. It permits us to use simultaneously the equations of the theories of elasticity and Timoshenko-type shells to describe different fragments of a structure. This model can be written as a closed system of differential equations of different dimensions with boundary conditions on the domain boundary and conjugate conditions on the surfaces where fragments are mated. A variational problem is formulated. The existence and uniqueness of the solution are analyzed. Numerical results demonstrate the efficiency of the approach  相似文献   

3.
A mathematical model is presented which describes the diffusion of oxygen in absorbing tissue, and numerical solution of its partial differential equation is obtained by the finite difference equations. The diffusion with absorption model is associated with the process of a moving boundary which marks the furthest penetration of oxygen in the absorbing cylindrically shaped sections of tissue and also allows for an initial distribution of oxygen through the absorbing tissue. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
A relatively high formation pressure gradient can exist in seepage flow in low-permeable porous media with a threshold pressure gradient, and a significant error may then be caused in the model computation by neglecting the quadratic pressure gradient term in the governing equations. Based on these concerns, in consideration of the quadratic pressure gradient term, a basic moving boundary model is constructed for a one-dimensional seepage flow problem with a threshold pressure gradient. Owing to a strong nonlinearity and the existing moving boundary in the mathematical model, a corresponding numerical solution method is presented. First, a spatial coordinate transformation method is adopted in order to transform the system of partial differential equations with moving boundary conditions into a closed system with fixed boundary conditions; then the solution can be stably numerically obtained by a fully implicit finite-difference method. The validity of the numerical method is verified by a published exact analytical solution. Furthermore, to compare with Darcy’s flow problem, the exact analytical solution for the case of Darcy’s flow considering the quadratic pressure gradient term is also derived by an inverse Laplace transform. A comparison of these model solutions leads to the conclusion that such moving boundary problems must incorporate the quadratic pressure gradient term in their governing equations; the sensitive effects of the quadratic pressure gradient term tend to diminish, with the dimensionless threshold pressure gradient increasing for the one-dimensional problem.  相似文献   

5.
The peristaltic flow of a heated Jeffrey fluid inside a duct with an elliptic cross-section is studied.A thorough heat transfer mechanism is interpreted by analyzing the viscous effects in the energy equation.The governing mathematical equations give dimensionless partial differential equations after simplification.The final simplified form of the mathematical equations is evaluated with respect to the relevant boundary conditions,and the exact solution is attained.The results are further illustrated by graphs,and the distinct aspects of peristaltic flow phenomena are discussed.  相似文献   

6.
有限积分法是Brown和Trahair在求解微分方程时采用的数值解法, 其核心环节是已知函数z= z(x)的导函数z′ =z′(x)的某些值的情况下数值分析z的方法. 由曲率φ计算挠度, 实质意义上是由z″计算z的数学问题. 基于有限积分法给出的zz″之间及z′与z″之间的数值关系, 通过矩阵运算推导得到了挠曲矩阵,通过引入转换式φ= -z″得到了曲率挠度关系式, 讨论了几种常见边界条件下的曲率挠度关系, 提出了曲率复杂分布情况下结构挠度计算的有限积分方法.  相似文献   

7.
8.
A mathematical model of the far turbulent wake behind a towed body in a passively stratified medium, based on the known semi-empirical e-? model of turbulence, is considered. A grouptheoretical analysis of the model is performed. With the help of the method of B-determining equations, the model is reduced to a system of ordinary differential equations, which is solved numerically. The resultant solution is compared with a self-similar solution obtained by direct numerical integration of the differential equations at large distances from the body.  相似文献   

9.
The processes of wave disturbance propagation in a supersonic boundary layer with self-induced pressure [1–4] are analyzed. The application of a new mathematical apparatus, namely, the theory of characteristics for systems of differential equations with operator coefficients [5–8], makes it possible to obtain generalized characteristics of the discrete and continuous spectra of the governing system of equations. It is shown that the discontinuities in the derivatives of the solution of the boundary layer equations are concentrated on the generalized characteristics. It is established that in the process of flow evolution the amplitude of the weak discontinuity in the derivatives may increase without bound, which indicates the possibility of breaking of nonlinear waves traveling in the boundary layer.  相似文献   

10.
Viscous damping is a dominant source of energy dissipation in laterally oscillating micro-structures. In micro-resonators in which the characteristic dimensions are compa-rable to the dimensions of the fluid molecules, the assumption of the continuum fluid theory is no longer justified and the use of micro-polar fluid theory is indispensable. In this paper a mathematical model was presented in order to predict the viscous fluid damping in a laterally oscillating finger of a micro-resonator considering micro-polar fluid theory. The coupled governing partial differential equations of motion for the vibration of the finger and the micro-polar fluid field have been derived. Considering spin and no-spin boundary conditions, the related shape functions for the fluid field were presented. The obtained governing differential equations with time varying boundary conditions have been trans-formed to an enhanced form with homogenous boundary conditions and have been discretized using a Galerkin-based reduced order model. The effects of physical properties of the micro-polar fluid and geometrical parameters of the oscillat-ing structure on the damping ratio of the system have been investigated.  相似文献   

11.
求解几何非线性桩-土耦合系统的微分求积单元法   总被引:1,自引:1,他引:0  
将桩-土系统看成在土层中嵌入了一根等圆截面桩的空间轴对称弹性体,在几何非线性的条件下建立了具有间断性条件的桩-土系统的非线性控制方程,并运用微分求积方法(DQEM)来求解了该问题.提出了利用DQEM求解非线性空间轴对称问题中处理单元之间连接条件(包括间断性条件)及边界条件的离散化方法,最终得到了一组离散化的非线性DQEM代数方程,运用Newton-Raphson迭代方法求解非线性代数方程组可以得到每个节点处的位移,进一步可以得到系统的应力和应变.给出了两个数值算例,并与有限元解进行了比较,它们是非常吻合的.将看到,由于在采用DQEM求解时只布置了较少的节点,因此,该文方法具有较小的计算工作量、较高的精度、良好的收敛性以及应用广泛等优点.该文提出的处理连接条件的方法是一个一般的方法,由于它在数学上遵循了求解边值问题的思路,因此,数学上也是严谨的.  相似文献   

12.
本文研究了考虑横向剪切影响的弹性厚壁圆柱壳的静力问题。利用变分原理得到平衡微分方程组和相应的边界条件。将平衡方程组归并成一个高阶微分方程,用数值法求出它的特征根,得到问题的解。  相似文献   

13.
徐茜  贾鸿铭  钟阳  张景辉 《力学季刊》2020,41(2):267-277
运用二维广义有限积分变换解法,本文推导出不同边界条件下矩形薄板弯曲问题的解析解.在推导过程中,选取满足边界条件的梁振型函数为广义积分变换的积分核,由此构造出广义有限积分变换对,通过对薄板弯曲问题的控制方程进行二维广义积分变换,可以将控制方程转换为易于求解的线性代数方程组.该方法无需预先选取位移函数,无需进行繁琐的叠加过程,求解过程思路清晰,说明该方法更加正确合理.最后通过计算实例对比,验证了该方法的合理性及所推导公式的正确性.  相似文献   

14.
An analysis of a phase field model of a free boundary   总被引:9,自引:0,他引:9  
A mathematical analysis of a new approach to solidification problems is presented. A free boundary arising from a phase transition is assumed to have finite thickness. The physics leads to a system of nonlinear parabolic differential equations. Existence and regularity of solutions are proved. Invariant regions of the solution space lead to physical interpretations of the interface. A rigorous asymptotic analysis leads to the Gibbs-Thompson condition which relates the temperature at the interface to the surface tension and curvature.  相似文献   

15.
The Non-uniform rational B-spline(NURBS)enhanced scaled boundary finite element method in combination with the modified precise integration method is proposed for the transient heat conduction problems in this paper.The scaled boundary finite element method is a semi-analytical technique,which weakens the governing differential equations along the circumferential direction and solves those analytically in the radial direction.In this method,only the boundary is discretized in the finite element sense leading to a reduction of the spatial dimension by one with no fundamental solution required.Nevertheless,in case of the complex geometry,a huge number of elements are generally required to properly approximate the exact shape of the domain and distorted meshes are often unavoidable in the conventional finite element approach,which leads to huge computational efforts and loss of accuracy.NURBS are the most popular mathematical tool in CAD industry due to its flexibility to fit any free-form shape.In the proposed methodology,the arbitrary curved boundary of problem domain is exactly represented with NURBS basis functions,while the straight part of the boundary is discretized by the conventional Lagrange shape functions.Both the concepts of isogeometric analysis and scaled boundary finite element method are combined to form the governing equations of transient heat conduction analysis and the solution is obtained using the modified precise integration method.The stiffness matrix is obtained from a standard quadratic eigenvalue problem and the mass matrix is determined from the low-frequency expansion.Finally the governing equations become a system of first-order ordinary differential equations and the time domain response is solved numerically by the modified precise integration method.The accuracy and stability of the proposed method to deal with the transient heat conduction problems are demonstrated by numerical examples.  相似文献   

16.
In previous work, the stresses of a mode I elastic–plastic fracture mechanics problem were analytically continued across a prescribed elastoplastic boundary for plane stress loading conditions involving a linear elastic/perfectly plastic material obeying the Tresca yield condition. Immediately across the elastic-plastic boundary, a nonlinear parabolic partial differential equation governs the plastic stress field. The present solution deals with stresses extending beyond the parabolic region into the hyperbolic region of the plastic zone. This analytical solution is obtained through a tranformation of the original system of nonlinear partial differential equations into a linear system with constant coefficients. The solution, so obtained, is expressible in terms of elementary transcendental functions. It also exhibits a limiting line which passes through the crack tip. This feature of the solution suggests the formation of a plastic hinge in the material.  相似文献   

17.
This article presents the behavior of slender elastic rods subjected to axial terminal forces and self-weight. The mathematical formulation is presented, a solution is sought for a double-hinged boundary condition and the analysis is carried out for different values of non-dimensional weight. The formulation derives from geometrical compatibility, equilibrium of forces and moments and constitutive relations yielding a set of six first order non-linear ordinary differential equations with boundary conditions specified at both ends, which characterizes a complex two-point boundary value problem. Furthermore, a perturbation method is used to find the critical buckling loads and initial post-buckling solutions. A numerical integration scheme based on a three parameter shooting method is employed in the post-buckling solutions.  相似文献   

18.
以常微分方程的理论为基础,利用新的对偶变量、对偶微分矩阵和正交关系,以单连续坐标弹性体系为例,建立了与弹性力学求解新体系平行的特征函数展开解法.并将正交关系应用于可对角化边界条件的处理,实现了求解待定系数方程组的解耦,求得问题的显式封闭解.  相似文献   

19.
This article presents a numerical solution for the flow of a Newtonian fluid over an impermeable stretching sheet embedded in a porous medium with the power law surface velocity and variable thickness in the presence of thermal radiation. The flow is caused by non-linear stretching of a sheet. Thermal conductivity of the fluid is assumed to vary linearly with temperature. The governing partial differential equations (PDEs) are transformed into a system of coupled non-linear ordinary differential equations (ODEs) with appropriate boundary conditions for various physical parameters. The remaining system of ODEs is solved numerically using a differential transformation method (DTM). The effects of the porous parameter, the wall thickness parameter, the radiation parameter, the thermal conductivity parameter, and the Prandtl number on the flow and temperature profiles are presented. Moreover, the local skin-friction and the Nusselt numbers are presented. Comparison of the obtained numerical results is made with previously published results in some special cases, with good agreement. The results obtained in this paper confirm the idea that DTM is a powerful mathematical tool and can be applied to a large class of linear and non-linear problems in different fields of science and engineering.  相似文献   

20.
A recursive operator method was used to obtain a general solution of the system of linearized differential equations of heat and mass transfer in hardening concrete in a heating chamber. The solution contains arbitrary analytic functions determined from the boundary and initial conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号