首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The first comprehensive quantum mechanical study of solvent effects on the behavior of the two lowest energy excited states of uracil derivatives is presented. The absorption and emission spectra of uracil and 5-fluorouracil in acetonitrile and aqueous solution have been computed at the time-dependent density-functional theory level, using the polarizable continuum model (PCM) to take into account bulk solvent effects. The computed spectra and the solvent shifts provided by our method are close to their experimental counterpart. The S0/S1 conical intersection, located in the presence of hydrogen-bonded solvent molecules by CASSCF (8/8) calculations, indicates that the mechanism of ground-state recovery, involving out-of-plane motion of the 5 substituent, does not depend on the nature of the solvent. Extensive explorations of the excited-state surfaces in the Franck-Condon (FC) region show that solvent can modulate the accessibility of an additional decay channel, involving a dark n/pi* excited state. This finding provides the first unifying explanation for the experimental trend of 5-fluorouracil excited-state lifetime in different solvents. The microscopic mechanisms underlying solvent effects on the excited-state behavior of nucleobases are discussed.  相似文献   

2.
The excited-state properties of uracil, thymine, and nine other derivatives of uracil have been studied by steady-state and time-resolved spectroscopy. The excited-state lifetimes were measured using femtosecond fluorescence upconversion in the UV. The absorption and emission spectra of five representative compounds have been computed at the TD-DFT level, using the PBE0 exchange-correlation functional for ground- and excited-state geometry optimization and the Polarizable Continuum Model (PCM) to simulate the aqueous solution. The calculated spectra are in good agreement with the experimental ones. Experiments show that the excited-state lifetimes of all the compounds examined are dominated by an ultrafast (<100 fs) component. Only 5-substituted compounds show more complex behavior than uracil, exhibiting longer excited-state lifetimes and biexponential fluorescence decays. The S(0)/S(1) conical intersection, located at CASSCF (8/8) level, is indeed characterized by pyramidalization and out of plane motion of the substituents on the C5 atom. A thorough analysis of the excited-state Potential Energy Surfaces, performed at the PCM/TD-DFT(PBE0) level in aqueous solution, shows that the energy barrier separating the local S(1) minimum from the conical intersection increases going from uracil through thymine to 5-fluorouracil, in agreement with the ordering of the experimental excited-state lifetime.  相似文献   

3.
Fast intersystem crossing is observed in the S(1)(1)nπ* state of N-heterocyclic aromatic hydrocarbons and carbonyl compounds. It is attributed to spin-orbit coupling with the (3)ππ* state in the same energy region. The strong singlet-triplet mixing was confirmed by large Zeeman splitting of rotational lines in a high-resolution spectrum. For the S(1)(1)ππ* state of aromatic hydrocarbons, the observed Zeeman splitting was found to be considerably small, and intersystem crossing was considered to be minor. These facts are in accordance with El-Sayed's rule, which states spin-orbit coupling is forbidden between the (1)ππ* and (3)ππ* states. The Zeeman splitting of several derivatives was also observed and the substitution effect on the intersystem crossing rate is discussed.  相似文献   

4.
Excited-state dynamics of 2-methyl furan has been studied by femtosecond time-resolved photoelectron imaging. The molecule 2-methyl furan was simultaneously excited to the n=3 Rydberg series of S1[1A"(π3s)], 1A'(π3px), 1A"(π3py) and 1A"(π3pz) and the valence state of 1A'(ππ*) by two 400 nm photons and subsequently probed by two 800 nm photons. The average lifetime of the Rydberg series and the valence state was measured to be on the time scale of 50 fs by the time-dependent ion yield of the parent ion. Ultrafast internal conversions among these excited states were observed and extracted from the time-dependences of the photoelectron kinetic energy components of these excited states in the photoelectron kinetic energy spectra. Furthermore, it is identified that the 1A'(ππ*) state might play an important role in internal conversions among these excited states. The Rydberg-valence mixings, which result in numerous conical intersections, act as the driving force to accomplish such ultrafast internal conversions.  相似文献   

5.
We have studied the charge‐transfer‐induced deactivation of nπ* excited triplet states of benzophenone derivatives by O2(3Σ), and the charge‐transfer‐induced deactivation of O2(1Δg) by ground‐state benzophenone derivatives in CH2Cl2 and CCl4. The rate constants for both processes are described by Marcus electron‐transfer theory, and are compared with the respective data for a series of biphenyl and naphthalene derivatives, the triplet states of which have ππ* configuration. The results demonstrate that deactivation of the locally excited nπ* triplets occurs by local charge‐transfer and non‐charge‐transfer interactions of the oxygen molecule with the ketone carbonyl group. Relatively large intramolecular reorganization energies show that this quenching process involves large geometry changes in the benzophenone molecule, which are related to favorable Franck‐Condon factors for the deactivation of ketone‐oxygen complexes to the ground‐state molecules. This leads to large rate constants in the triplet channel, which are responsible for the low efficiencies of O2(1Δg) formation observed with nπ* excited ketones. Compared with the deactivation of ππ* triplets, the non‐charge‐transfer process is largely enhanced, and charge‐transfer interactions are less important. The deactivation of singlet oxygen by ground‐state benzophenone derivatives proceeds via interactions of O2(1Δg) with the Ph rings.  相似文献   

6.
We report a comparison of the steady-state absorption and fluorescence spectra of three representative uracil derivatives (uracil, thymine and 5-fluorouracil) in alcoholic solutions. The present results are compared with those from our previous experimental and computational studies of the same compounds in water and acetonitrile. The effects of solvent polarity and hydrogen bonding on the spectra are discussed in the light of theoretical predictions. This comparative analysis provides a more complete picture of the solvent effects on the absorption and fluorescence properties of pyrimidine nucleobases, with special emphasis on the mechanism of the excited state deactivation.  相似文献   

7.
A combination of ultrafast time-resolved velocity map imaging (TR-VMI) methods and complete active space self-consistent field (CASSCF) ab initio calculations are implemented to investigate the electronic excited-state dynamics in aniline (aminobenzene), with a perspective for modeling (1)πσ* mediated dynamics along the amino moiety in the purine derived DNA bases. This synergy between experiment and theory has enabled a comprehensive picture of the photochemical pathways/conical intersections (CIs), which govern the dynamics in aniline, to be established over a wide range of excitation wavelengths. TR-VMI studies following excitation to the lowest-lying (1)ππ* state (1(1)ππ*) with a broadband femtosecond laser pulse, centered at wavelengths longer than 250 nm (4.97 eV), do not generate any measurable signature for (1)πσ* driven N-H bond fission on the amino group. Between wavelengths of 250 and >240 nm (<5.17 eV), coupling from 1(1)ππ* onto the (1)πσ* state at a 1(1)ππ*/(1)πσ* CI facilitates ultrafast nonadiabatic N-H bond fission through a (1)πσ*/S(0) CI in <1 ps, a notion supported by CASSCF results. For excitation to the higher lying 2(1)ππ* state, calculations reveal a near barrierless pathway for CI coupling between the 2(1)ππ* and 1(1)ππ* states, enabling the excited-state population to evolve through a rapid sequential 2(1)ππ* → 1(1)ππ* → (1)πσ* → N-H fission mechanism, which we observe to take place in 155 ± 30 fs at 240 nm. We also postulate that an analogous cascade of CI couplings facilitates N-H bond scission along the (1)πσ* state in 170 ± 20 fs, following 200 nm (6.21 eV) excitation to the 3(1)ππ* surface. Particularly illuminating is the fact that a number of the CASSCF calculated CI geometries in aniline bear an exceptional resemblance with previously calculated CIs and potential energy profiles along the amino moiety in guanine, strongly suggesting that the results here may act as an excellent grounding for better understanding (1)πσ* driven dynamics in this ubiquitous genetic building block.  相似文献   

8.
We present results from transient absorption spectroscopy on a series of artificial light-harvesting dyads made up of a zinc phthalocyanine (Pc) covalently linked to carotenoids with 9, 10, or 11 conjugated carbon-carbon double bonds, referred to as dyads 1, 2, and 3, respectively. We assessed the energy transfer and excited-state deactivation pathways following excitation of the strongly allowed carotenoid S2 state as a function of the conjugation length. The S2 state rapidly relaxes to the S* and S1 states. In all systems we detected a new pathway of energy deactivation within the carotenoid manifold in which the S* state acts as an intermediate state in the S2-->S1 internal conversion pathway on a sub-picosecond time scale. In dyad 3, a novel type of collective carotenoid-Pc electronic state is observed that may correspond to a carotenoid excited state(s)-Pc Q exciplex. The exciplex is only observed upon direct carotenoid excitation and is nonfluorescent. In dyad 1, two carotenoid singlet excited states, S2 and S1, contribute to singlet-singlet energy transfer to Pc, making the process very efficient (>90%) while for dyads 2 and 3 the S1 energy transfer channel is precluded and only S2 is capable of transferring energy to Pc. In the latter two systems, the lifetime of the first singlet excited state of Pc is dramatically shortened compared to the 9 double-bond dyad and model Pc, indicating that the carotenoid acts as a strong quencher of the phthalocyanine excited-state energy.  相似文献   

9.
The dynamics of the excited states of 1-(p-nitrophenyl)-2-(hydroxymethyl)pyrrolidine (p-NPP) has been investigated using the subpicosecond transient absorption spectroscopic technique in different kinds of solvents. Following photoexcitation using 400 nm light, conformational relaxation via twisting of the nitro group, internal conversion (IC) and the intersystem crossing (ISC) processes have been established to be the three major relaxation pathways responsible for the ultrafast deactivation of the excited singlet (S(1)) state. Although the nitro-twisting process has been observed in all kinds of solvents, the relative probability of the occurrence of the other two processes has been found to be extremely sensitive to solvent polarity, because of alteration of the relative energies of the S(1) and the triplet (T(n)) states. In the solvents of lower polarity, the ISC is predominant over the IC process, because of near isoenergeticity of the S(1)(ππ*) and T(3)(nπ*) states. On the other hand, in the solvents of very large polarity, the energy of the S(1)(ππ*) state becomes lower than those of both the T(3)(nπ*) and T(2)(nπ*/ππ*) states, but those of the T(1)(ππ*) state and the IC process to the ground electronic (S(0)) state are predominant over the ISC, and hence the triplet yield is nearly negligible. However, in the solvents of medium polarity, the S(1) and T(2) states become isoenergetic and the deactivation of the S(1) state is directed to both the IC and ISC channels. In the solvents of low and medium polarity, following the ISC process, the excited states undergo IC, vibrational relaxation, and solvation in the triplet manifold. On the other hand, following the IC process in the Franck-Condon region of the S(0) state, the vibrationally hot molecules with the twisted nitro group subsequently undergo the reverse nitro-twisting process via dissipation of the excess vibrational energy to the solvent or vibrational cooling.  相似文献   

10.
We employed the complete active space self‐consistent field (CASSCF) and its multistate second‐order perturbation (MS‐CASPT2) methods to explore the photochemical mechanism of 2‐hydroxyazobenzene, the molecular scaffold of Sudan I and Orange II dyes. It was found that the excited‐state intramolecular proton transfer (ESIPT) along the bright diabatic 1ππ* state is barrierless and ultrafast. Along this diabatic 1ππ* relaxation path, the system can jump to the dark 1nπ* state via the 1ππ*/1nπ* crossing point. However, ESIPT in this dark state is largely inhibited owing to a sizeable barrier. We also found two deactivation channels that decay 1ππ* keto and 1nπ* enol species to the ground state via two energetically accessible S1/S0 conical intersections. Finally, we encountered an interesting phenomenon in the excited‐state hydrogen‐bonding strength: it is reinforced in the 1ππ* state, whereas it is reduced in the 1nπ* state. The present work sets the stage for understanding the photophysics and photochemistry of Sudan I–IV, Orange II, Ponceau 2R, Ponceau 4R, and azo violet.  相似文献   

11.
5-Fluorouracil is an analogue of thymine and uracil, nucleobases found in DNA and RNA, respectively. The photochemistry of thymine is significant; UV-induced photoproducts of thymine in DNA lead to skin cancer and other diseases. In previous work, we have suggested that the differences in the excited-state structural dynamics of thymine and uracil arise from the methyl group in thymine acting as a mass barrier, localizing the vibrations at the photochemical active site. To further test this hypothesis, we have measured the resonance Raman spectra of 5-fluorouracil at wavelengths throughout its 267 nm absorption band. The spectra of 5-fluorouracil and thymine are very similar. Self-consistent analysis of the resulting resonance Raman excitation profiles and absorption spectrum using a time-dependent wave packet formalism suggests that, at most, 81% of the reorganization energy upon excitation is directed along photochemically relevant modes. This compares well with what was found for thymine, supporting the mass barrier hypothesis.  相似文献   

12.
Lifetimes of the first electronic excited state (S(1)) of fluorine and methyl (o-, m-, and p-) substituted phenols and their complexes with one ammonia molecule have been measured for the 0(0) transition and for the intermolecular stretching σ(1) levels in complexes using picosecond pump-probe spectroscopy. Excitation energies to the S(1) (ππ*) and S(2) (πσ*) states are obtained by quantum chemical calculations at the MP2 and CC2 level using the aug-cc-pVDZ basis set for the ground-state and the S(1) optimized geometries. The observed lifetimes and the energy gaps between the ππ* and πσ* states show a good correlation, the lifetime being shorter for a smaller energy gap. This propensity suggests that the major dynamics in the excited state concerns an excited state hydrogen detachment or transfer (ESHD/T) promoted directly by a S(1)/S(2) conical intersection, rather than via internal conversion to the ground-state. A specific shortening of lifetime is found in the o-fluorophenol-ammonia complex and explained in terms of the vibronic coupling between the ππ* and πσ* states occurring through the out-of-plane distortion of the C-F bond.  相似文献   

13.
The role of N1-substitution in controlling the deactivation processes in photoexcited cytosine derivatives has been explored using picosecond time-resolved IR spectroscopy. The simplest N1-substituted derivative, 1-methylcytosine, exhibits relaxation dynamics similar to the cytosine nucleobase and distinct from the biologically relevant nucleotide and nucleoside analogues, which have longer-lived excited-state intermediates. It is suggested that this is the case because the sugar group either facilitates access to the long-lived (1)n(O)π* state or retards its crossover to the ground state.  相似文献   

14.
应用高精度的多态完全活化自洽场二级微扰理论方法,在量子力学/分子力学组合方法的理论框架QM(MS-CASPT2//CASSCF)/MM下,系统研究了DNA环境中2-硒和4-硒取代胸腺嘧啶和腺嘌呤碱基对(2SeT-A和4SeT-A)的最低5个电子态(S0, S1, S2, T2和T1)的结构、性质和光物理过程. QM(MS-CASPT2//CASSCF)/MM计算揭示了DNA环境中2SeT-A和4SeT-A碱基对激发态性质和光物理过程差异性的来源,提出的机理将有助于理解DNA类似物的光物理过程,在光动力学治疗中具有潜在的应用.  相似文献   

15.
Millisecond time-resolved emission spectroscopy was used to probe the phosphorescence kinetics of the α-β-enone 6β, 19-epoxycholest-4-en-3-one (1) as a function of concentration in several paraffinic and hydroxylic glasses at 77 K. Only in methylcyclohexane/methylcyclopentane glass at low concentration (10?4M) does the phosphorescence decay exponentially. It is interpreted as emission from the 3n* state. Upon increasing the concentration a second emission grows which is characterized by a longer lifetime, a decreased fine structure and a hypsochromically shifted S01nπ* excitation spectrum. This phosphorescence is ascribed to 3ππ* emission of aggregates of 1. In hydroxylic glasses the phosphorescence decay is multiexponential, even at 10?4M concentration; from emission band shapes and lifetimes it follows that both 3nπ* and 3ππ* type emissions are present, the latter increasing with the alcohol concentration in the solvent. The two types of phosphorescence have different excitation spectra: that of the structureless and long-lived 3ππ* emission is shifted to the blue in the S01nπ* region and to the red in the S01ππ* region. This emission is ascribed to complexes of 1 with the alcoholic solvent. The results of time-resolved measurements of the circular polarization of the luminescence are consistent with the assignments given above and indicate that in the H-bonded and possibly also in the free species 3ππ* and 3nπ* states are intermixed to a considerable extent.  相似文献   

16.
The CASSCF and CASPT2 methodologies have been used to explore the potential energy surfaces of lumisantonin in the ground and low-lying triplet states along the photoisomerization pathways. Calculations indicate that the (1)(nπ*) state is the accessible low-lying singlet state with a notable oscillator strength under an excitation wavelength of 320 nm and that it can effectively decay to the (3)(ππ*) state through intersystem crossing in the region of minimum surface crossings with a notable spin-orbital coupling constant. The (3)(ππ*) state, derived from the promotion of an electron from the π-type orbital mixed with the σ orbital localized on the C-C bond in the three-membered alkyl ring to the π* orbital of conjugation carbon atoms, plays a critical role in C-C bond cleavage. Based on the different C-C bond rupture patterns, the reaction pathways can be divided into paths A and B. Photolysis along path A arising from C1-C5 bond rupture is favorable because of the dynamic and thermodynamic preferences on the triplet excited-state PES. Path B is derived from the cleavage of the C5-C6 bond, leading first to a relatively stable species, compared to intermediate A-INT formed on the ground state PES. Accordingly, path B is relatively facile for the pyrolytic reaction. The present results provide a basis to interpret the experimental observations.  相似文献   

17.
采用半经典电子-辐射-离子动力学(SERID)模型模拟了π堆积的腺嘌呤-胸腺嘧啶(A-T)体系激发态的光物理失活过程. 设置激光脉冲仅作用于T, 模拟发现电子由A转移到T, 形成(A+T-)*激基缔合物(exciplex). 当分子间距缩短至0.300 nm时, 由于轨道离域效应产生电荷重组, 体系恢复电中性; 当A分子的C4'-C5'扭曲程度最大时, 体系通过避免交叉点衰减至基态. Exciplex 的失活途径由分子间距离和A分子的变形程序两个因素决定. 由于A分子的C4'、C5'原子位阻较大, 难以达到失活所必需的强烈扭曲, 因此(A-T)*的寿命比胸腺嘧啶堆积体系(T-T)*显著增长.  相似文献   

18.
We have investigated the UV vibronic spectra and excited-state nonradiative processes of the 7H- and 9H-tautomers of jet-cooled 2-aminopurine (2AP) and of the 9H-2AP-d(4) and -d(5) isotopomers, using two-color resonant two-photon ionization spectroscopy at 0.3 and 0.045 cm(-1) resolution. The S(1) ← S(0) transition of 7H-2AP was observed for the first time. It lies ~1600 cm(-1) below that of 9H-2AP, is ~1000 times weaker and exhibits only in-plane vibronic excitations. In contrast, the S(1) ← S(0) spectra of 9H-2AP, 9H-2AP-d(4), and 9H-2AP-d(5) show numerous low-frequency bands that can be systematically assigned to overtone and combinations of the out-of-plane vibrations ν(1)', ν(2)', and ν(3)'. The intensity of these out-of-plane bands reflects an out-of-plane deformation in the (1)ππ?(L(a)) state. Approximate second-order coupled-cluster theory also predicts that 2-aminopurine undergoes a "butterfly" deformation in its lowest (1)ππ? state. The rotational contours of the 9H-2AP, 9H-2AP-d(4), and 9H-2AP-d(5) 0(0)(0) bands and of eight vibronic bands of 9H-2AP up to 0(0)(0) + 600 cm(-1) exhibit 75%-80% in-plane (a∕b) polarization, which is characteristic for a (1)ππ? excitation. A 20%-25% c-axis (perpendicular) transition dipole moment component may indicate coupling of the (1)ππ? bright state to the close-lying (1)nπ? dark state. However, no (1)nπ? vibronic bands were detected below or up to 500 cm(-1) above the (1)ππ? 0(0)(0) band. Following (1)ππ? excitation, 9H-2AP undergoes a rapid nonradiative transition to a lower-lying long-lived state with a lifetime ≥5 μs. The ionization potential of 9H-2AP was measured via the (1)ππ? state (IP = 8.020 eV) and the long-lived state (IP > 9.10 eV). The difference shows that the long-lived state lies ≥1.08 eV below the (1)ππ? state. Time-dependent B3LYP calculations predict the (3)ππ? (T(1)) state 1.12 eV below the (1)ππ? state, but place the (1)nπ? (S(1)) state close to the (1)ππ? state, implying that the long-lived state is the lowest triplet (T(1)) and not the (1)nπ? state.  相似文献   

19.
The mechanisms which are responsible for the radiationless deactivation of the npi* and pipi* excited singlet states of thymine have been investigated with multireference ab initio methods (the complete-active-space self-consistent-field (CASSCF) method and second-order perturbation theory with respect to the CASSCF reference (CASPT2)) as well as with the CC2 (approximated singles and doubles coupled-cluster) method. The vertical excitation energies, the equilibrium geometries of the 1npi*and 1pipi* states, as well as their adiabatic excitation energies have been determined. Three conical intersections of the S1 and S0 energy surfaces have been located. The energy profiles of the excited states and the ground state have been calculated with the CASSCF method along straight-line reaction paths leading from the ground-state equilibrium geometry to the conical intersections. All three conical intersections are characterized by strongly out-of-plane distorted geometries. The lowest-energy conical intersection (CI1) arises from a crossing of the lowest 1pipi* state with the electronic ground state. It is found to be accessible in a barrierless manner from the minimum of the 1pipi* state, providing a direct and fast pathway for the quenching of the population of the lowest optically allowed excited states of thymine. This result explains the complete diffuseness of the absorption spectrum of thymine in supersonic jets. The lowest vibronic levels of the optically nearly dark 1npi* state are predicted to lie below CI1, explaining the experimental observation of a long-lived population of dark excited states in gas-phase thymine.  相似文献   

20.
A vibrational analysis is presented of high resolution ππ* phosphorescence spectra of the 2,4-, 2,5- and 3,4-dimethylbenzaldehyde-1h1 and ?1d1, guests in durene host. As previously reported for the fully hydrogenated molecules, the energy gaps between the zero-point levels of the 3ngp*, and 3ππ* states of the guests deuterated on the aldehydic group are determined from the temperature dependence of their phosphorescence spectra and lifetimes. These vibronic energy gaps tend to be larger in the deuterated species.The existence of the vibronic coupling between 3nπ* and 3ππ* states of dimethylbenzaldehydes is suggested by the important activity, in the ππ* phosphorescence spectra, of nontotally symmetric modes involving the aldehydic group and the aromatic ring. Among these vibrations, the most active are the aldehydic CH and CD wagging modes which also show overtone activity. The intensities of the induced bands show a strong deuterium effect which in the 2,4 and 2,5 compounds is anomalous in that the deuterated species shows the higher induced intensity. The observation of phosphorescence spectra from each molecule in two different sites allows an assessment of the crystal field effect which is found to be moderately strong. These observations can be understood qualitatively on the basis of weak pseudo Jahn-Teller-like coupling between the 3ππ* and 3nπ* states which is subject to interference from Herzberg-Teller coupling involving at least one additional state. No convincing evidence is found for nonplanar distortions of the guest molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号