首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
毛细管离子电泳法同时测定腌菜中硝酸根和亚硝酸根   总被引:3,自引:0,他引:3  
以溴离子(Br-)为内标,建立了毛细管离子电泳同时测定腌菜中的硝酸根和亚硝酸根的方法。讨论了缓冲液pH、样品和缓冲液中氯化钠浓度、分离电压对分离的影响。结果表明:以含1mol LNaCl的40mmol LH3PO4 NaOH缓冲-、-得到基线分离。NO3-和NO2液(pH3.5)为背景电解质,4min内Br-、NO3-检出限分别为0.1g L和0.3g L,峰面积相对标准偏差分别为4.6%和NO25 8%。  相似文献   

2.
Determination of nitrite and nitrate in human serum   总被引:3,自引:0,他引:3  
A simple and effective assay for nitrite and nitrate in human serum has been developed using ion chromatography. Initial experiments using isocratic carbonate-bicarbonate elution with conductivity detection on a Dionex QIC system with an AS4A-SC column showed promise but were unsatisfactory because of co-elution problems with nitrite. Carbonate and chloride were investigated as eluents using a gradient system, and direct UV detection at 214 nm was used in place of conductivity detection. Dionex AS4A, AS9A, AS12, Nucleopac PA-100 and Carbopac PA-100 columns were compared for selectivity and resistance to overload. The final method, using a chloride concentration gradient, pH buffering and direct UV detection with a Carbopac PA-100 column, shows good resolution, does not suffer from chloride overload and is simple to use. The method is being used in an investigation of the role of nitric oxide in pre-eclampsia, a hypertensive disorder during pregnancy.  相似文献   

3.
A rapid, simple miniaturised photometrical method was developed for the determination of nitrate and/or nitrite in freshwater samples. All procedures, including sample buffering, reduction by copperised cadmium granules, colour development and absorbance determination, were completed in a 96-well microplate. The factors governing the nitrate reduction and its recovery were investigated in detail, and the optimised analysing conditions were established. Nitrate was quantitatively reduced by copperised cadmium granules with a high reduction efficiency (96.59 ± 0.96%). The proposed method gave a linear calibration ranging from 0.01 to 1.50 mg L−1 for NO2-N and 0.02 to 1.50 mg L−1 for NO3-N. The detection limits for nitrite and nitrate were 2 and 4 μg L−1, respectively. The proposed method allowed at least 48 samples to be simultaneously analysed in duplicate, with good precision, within 90 min for nitrate and 30 min for nitrite, and was successfully applied to actual freshwater sample analysis with a recovery of 98.02 ± 1.04% for nitrite and 99.72 ± 1.39% for nitrate. This method produced accurate results comparable to standard methods, provided a much higher sample throughput than conventional methods and could be routinely used in actual freshwater sample monitoring.  相似文献   

4.
建立了连续测定NO2-和NO3-的柱后在线衍生结合流动注射光度分析体系.阴离子交换柱(HPIC-AS3)分离水样中的NO2-和NO3-,洗脱液依次将NO2-和NO3-洗脱流经镀铜镉还原柱,NO3-在线还原为NO2-,与对氨基苯磺酸溶液和N-(1-萘基)-乙二胺溶液合并,在λmax=500 nm处对NO2-和NO3-产生的红色染料进行光度连续检测.NO2-和NO3-的线性范围分别为0.01~1.0mg/L和0.02~2.0 mg/L,检出限分别为0.004和0.008 ng/L.方法用于雨水、湖水和自来水中痕量NO2-和NO3-的同时连续测定.  相似文献   

5.
Yue XF  Zhang ZQ  Yan HT 《Talanta》2004,62(1):97-101
A new flow injection catalytic spectrophotometric method is proposed for the simultaneous determination of nitrite and nitrate based on the catalytic effect of nitrite on the redox reaction between crystal violet and potassium bromate in phosphoric acid medium and nitrate being on-line reduced to nitrite with a cadmium-coated zinc reduction column. The redox reaction is monitored spectrophotometrically by measuring the decrease in the absorbance of crystal violet at the maximum absorption wavelength of 610 nm. A technique of inserting a reduction column into sampling loop is adopted and the flow injection system produces a signal with a shoulder. The height of shoulder in the ascending part of the peak corresponds to the nitrite concentration and the maximum of the peak corresponds to nitrate plus nitrite. The detection limits are 0.3 ng ml−1 for nitrite and 1.0 ng ml−1 for the nitrate. Up to 32 samples can be analyzed per hour with a relative standard deviation of less than 2%. The method has been successfully applied for the simultaneous determination of nitrite and nitrate in natural waters.  相似文献   

6.
A new rapid flow injection procedure for the simultaneous determination of nitrate, nitrite and ammonium in single flow injection analysis system is proposed. The procedure combines on-line reduction of nitrate to nitrite and oxidation of ammonium to nitrite with spectrophotometric detection of nitrite by using the Griess-llosvay reaction. The formed azo dye was measured at 543 nm. The influence of reagent concentration and manifold parameters were studied. Nitrite, nitrate and ammonium can be determined within the range of 0.02–1.60 μg mL−1, 0.02–1.60 μg mL−1 and 0.05–1.40 μg mL−1, respectively. R.S.D. values (n = 10) were 2.66; 1.41 and 3.58 for nitrate, nitrite and ammonium, respectively. This procedure allows the determination and speciation of inorganic nitrogen species in soils with a single injection in a simple way, and high sampling rate (18 h−1). Detection limits of 0.013, 0.046 and 0.047 μg mL−1were achieved for nitrate, nitrite and ammonium, respectively. In comparison with others methods, the proposed one is more simple, it uses as single chromogenic reagent less injection volume (250 mL in stead of 350 mL) and it has a higher sampling rate.  相似文献   

7.
Burakham R  Oshima M  Grudpan K  Motomizu S 《Talanta》2004,64(5):1259-1265
A novel spectrophotometric reaction system was developed for the determination of nitrite as well as nitrate in water samples, and was applied to a flow-injection analysis (FIA). The spectrophotometric flow-injection system coupled with a copperised cadmium reductor column was proposed. The detection was based on the nitrosation reaction between nitrite ion and phloroglucinol (1,3,5-trihydroxybenzene), a commercially available phenolic compound. Sample injected into a carrier stream was split into two streams at the Y-shaped connector. One of the streams merged directly and reacted with the reagent stream: nitrite ion in the samples was detected. The other stream was passed through the copperised cadmium reductor column, where the reduction of nitrate to nitrite occurred, and the sample zone was then mixed with the reagent stream and passed through the detector: the sum of nitrate and nitrite was detected. The optimised conditions allow a linear calibration range of 0.03–0.30 μg NO2-N ml−1 and 0.10–1.00 μg NO3-N ml−1. The detection limits for nitrite and nitrate, defined as three times the standard deviation of measured blanks are 2.9 ng NO2-N ml−1 and 2.3 ng NO3-N ml−1, respectively. Up to 20 samples can be analyzed per hour with a relative standard deviation of less than 1.5%. The proposed method could be applied successfully to the simultaneous determination of nitrite and nitrate in water samples.  相似文献   

8.
A centrifugal microfluidic device was developed for the rapid sequential determination of two critical environmental species, nitrate and nitrite, in water samples. The nitrate is reduced to nitrite and the nitrite is derivatized. The analytes are determined spectrophotometrically through the disc with a 1.4 mm pathlength. The detection limits are 0.05 and 0.16 mg L−1 for nitrite and nitrate respectively. The use of powdered reagents, the 100 μL sample required and the design of the device suggest that it would be suitable for field use.  相似文献   

9.
Zuo Y  Wang C  Van T 《Talanta》2006,70(2):281-285
A simple, fast, sensitive and accurate reversed-phase ion-pair HPLC method for simultaneous determination of nitrite and nitrate in atmospheric liquids and lake waters has been developed. Separations were accomplished in less than 10 min using a reversed-phase C18 column (150 mm × 2.00 mm i.d., 5 μm particle size) with a mobile phase containing 83% 3.0 mM ion-interaction reagent tetrabutylammonium hydroxide (TBA-OH) and 2.0 mM sodium phosphate buffer at pH 3.9 and 17% acetonitrile (flow rate, 0.4 mL/min). UV light absorption responses at 205 nm were linear over a wide concentration range from 100 μg/mL to the detection limits of 10 μg/L for nitrite and 5 μg/L nitrate. Quantitation was carried out by the peak area method. The relative standard deviation for the analysis of nitrite and nitrate was less than 3.0%. This method was applied for the simultaneous determination of nitrite and nitrate in dew, rain, snow and lake water samples collected in southeast Massachusetts. Nitrate was found being present at 4.79-5.99 μg/mL in dew, 1.20-2.63 μg/mL in rain, 0.32-0.60 μg/mL in snow and 0.12-0.23 μg/mL in lake water. Nitrite was only a minor species in dew (0.62-0.83 μg/mL), rain (<0.005-0.14 μg/mL), snow (0.021-0.032 μg/mL) and lake water (0.12-0.16 μg/mL). High levels of nitrite and nitrate observed in dew water droplets may constitute an important source of hydroxyl radicals in the sunny early morning.  相似文献   

10.
Ion interaction reversed-phase liquid chromatography with octylammonium orthophosphate as the interacting reagent and a reversed-phase C18 column was applied to the identification and determination of nitrite and nitrate in Venice lagoon water. Interference by the high chloride concentration was systematically studied and the results obtained with different column packings were compared. With spectrophotometric detection at 230 nm, nitrite at 0.005 mg 1?1 can be detected and determined even in the presence of 0.70 M chloride. The dependence of the retention time of nitrite on the chloride concentration was studied for two reversed-phase columns with different packings. Concentrations of 0.30 ± 0.05 mg 1?1 of nitrite and 0.20 ± 0.05 mg 1?1 of nitrate were found in Venice lagoon water.  相似文献   

11.
Spectrophotometric flow injection methods were developed for the individual determination of nitrite or nitrate, and for the simultaneous determination of nitrite and nitrate, in soil samples. Nitrite was determined directly using a modified version of the Griess-Ilosvay diazo-coupling reaction, measuring at 543 nm the absorbance of the azo-dye complex formed. Simultaneous nitrite and nitrate determinations were based on on-line nitrate reduction in a micro column containing copperised cadmium. A single chromogenic reagent containing all the necessary reactants was used in both methods. For determinations, the chemical and instrumental variables were optimised by univariate analysis and simplex chemometric method. The optimised conditions gave a linear calibration range between 0.05 and 1.6 µg m L− 1 for N-NO2 and between 0.05 and 7.0 µg m L− 1 for N-NO3. The detection limits for nitrite and nitrate were 22 µg L− 1 and 44 µg L− 1 respectively. The proposed methods allowed up to 35-40 samples per hour to be analysed with good precision. The simultaneous method was successfully used for the determination of nitrite and nitrate in soil samples (the results obtained were validated against those obtained by reference methods). The proposed methods are simpler and faster than conventional methods and could be routinely used in environmental monitoring laboratories.  相似文献   

12.
The applicability of capillary zone electrophoresis for the determinations of nitrite and nitrate was studied. Using direct UV detection the limit of detection values of the analytes were 0.14 and 0.21 microg/mL, respectively. The developed method was found to be useful to directly determine nitrite, nitrate and thiocyanate in saliva. It was found that adjusting the pH of the sample to 11 and storing the saliva at 4 degrees C was adequate to make constant the nitrite/nitrate ratio in saliva samples at least 7 days.  相似文献   

13.
A sensitive CE method for determining biogenic amines in wines based on in-capillary derivatization with 1,2-naphthoquinone-4-sulfonate is presented. In this method, reagent and buffer solutions are introduced hydrodynamically into the capillary whereas the sample is injected electrokinetically, thus, allowing a selective preconcentration of the analytes by field-amplified sample stacking. Amines are labeled inside the capillary using a zone-passing derivatization approach in mixed tandem mode. The most relevant variables influencing on the derivatization and separation as well as significant interactions have been evaluated using experimental design. Multi-criteria decision making is utilized for the simultaneous optimization of interacting variables through overall desirability response surfaces. The validation of the method has proven an excellent separation performance and accuracy for the determination of biogenic amines such as histamine, tryptamine, phenylethylamine, tyramine, agmatine, ethanolamine, serotonin, cadaverine, and putrescine in red wines. Detection limits range from 0.02 mg/L for ethanolamine to 0.91 mg/L for serotonin. The RSDs for migration time and peak area are around 1.2 and 6.2%, respectively. Red wines from different Spanish regions have been analyzed using the proposed method.  相似文献   

14.
Summary A capillary electrophoretic method for the simultaneous separation of nitrate, nitrite and ammonium has been developed. Direct (NO3 , NO2 ) and indirect (NH4 +) UV detection at 214 nm in conjunction with electromigration sampling from both ends of the capillary was used. Two electrolyte systems based on imidazole-sulfate (pH 3.8) and copper(II)-ethylenediamine-chloride (pH 8.0) were investigated. Optimisation of the experimental parameters such as electrolyte concentration, pH, nature of the counter-ion, was studied. The method permits excellent separation of three nitrogen species in only 4 min. The analytical performance of both electrolyte systems is compared in terms of migration time and peak area repeatability and detectability. Alkaline electrolyte shows a better overall analytical performance.  相似文献   

15.
A simple and sensitive method for the determination of nitrite and nitrate in water using solid phase spectrophotometry is described. The method utilizes the quantitative and rapid sorption of the dye formed from nitrite, using the Griess reaction, into a thin layer of polyurethane foam (PUF) where a preconcentration factor of >140 has been achieved. Nitrate is pre-reduced using a cadmium reductor before applying the Griess reaction. The direct spectrophotometric measurement of the dye enriched in the solid foam phase has allowed the detection of as little as 5 and 40 ng ml−1 nitrite and nitrate, respectively. Optimization of the parameters affecting the quantitative formation and sorption of the dye into PUF has been considered. Analysis of natural water samples has been performed.  相似文献   

16.
A simple, sensitive and selective method for the simultaneous determination of nitrite and nitrate in water samples has been developed. The method is based on ion-exchange separation, online photochemical reaction, and luminol chemiluminescence detection. The separation of nitrite and nitrate was achieved using an anion-exchange column with a 20 mM borate buffer (pH 10.0). After the separation, these ions were converted to peroxynitrite by online UV irradiation using a low-pressure mercury lamp and then mixed with a luminol solution prepared with carbonate buffer (pH 10.0). The calibration graphs of the nitrite and nitrate were linear in the range from 2.0 × 10−9 to 2.5 × 10−6 M and 2.0 × 10−8 to 2.5 × 10−5 M, respectively. Since the sensitivity of nitrite was about 10 times higher than that of nitrate, the simultaneous determination of nitrite and nitrate in the water samples could be efficiently achieved. This method was successfully applied to various water samples – river water, pond water, rain water, commercial mineral water, and tap water – with only filtration and dilution steps.  相似文献   

17.
Ferreira IM  Silva S 《Talanta》2008,74(5):1598-1602
Nitrite and nitrate are used as additives in ham industry to provide colour, taste and protect against clostridia. The classical colorimetric methods widely used to determine nitrite and nitrate are laborious, suffer from matrix interferences and involve the use of toxic cadmium. The use of chromatography is potentially attractive since it is more rapid, sensitive, selective and provides reliable and accurate results. A rapid and cost-effective RP-HPLC method with diode array detector was optimized and validated for quantification of nitrites and nitrates in ham. The chromatographic separation was achieved using a HyPurity C18, 5 μm chromatographic column and gradient elution with 0.01 M n-octylamine and 5 mM tetrabutylammonium hydrogenosulphate to pH 6.5. The determinations were performed in the linear range of 0.0125–10.0 mg/L for nitrite and 0.0300–12.5 g/L for nitrate. The detection limits were 0.019 and 0.050 mg/kg, respectively. The reliability of the method in terms of precision and accuracy was evaluated. Coefficients of variation lower than 2.89% and 5.47% were obtained for nitrite and nitrate, respectively (n = 6). Recoveries of residual nitrite/nitrate ranged between 93.6% and 104.3%. Analysis of cooked and dried ham samples was performed, and the results obtained were in agreement with reference procedures.  相似文献   

18.
In this work a new electrochemical sensor based on an Ag-doped zeolite-expanded graphite-epoxy composite electrode (AgZEGE) was evaluated as a novel alternative for the simultaneous quantitative determination of nitrate and nitrite in aqueous solutions. Cyclic voltammetry was used to characterize the electrochemical behavior of the electrode in the presence of individual or mixtures of nitrate and nitrite anions in 0.1 M Na2SO4 supporting electrolyte. Linear dependences of current versus nitrate and nitrite concentrations were obtained for the concentration ranges of 1-10 mM for nitrate and 0.1-1 mM for nitrite using cyclic voltammetry (CV), chronoamperometry (CA), and multiple-pulsed amperometry (MPA) procedures. The comparative assessment of the electrochemical behavior of the individual anions and mixtures of anions on this modified electrode allowed determining the working conditions for the simultaneous detection of the nitrite and nitrate anions. Applying MPA allowed enhancement of the sensitivity for direct and indirect nitrate detection and also for nitrite detection. The proposed sensor was applied in tap water samples spiked with known nitrate and nitrite concentrations and the results were in agreement with those obtained by a comparative spectrophotometric method. This work demonstrates that using multiple-pulse amperometry with the Ag-doped zeolite-expanded graphite-epoxy composite electrode provides a real opportunity for the simultaneous detection of nitrite and nitrate in aqueous solutions.  相似文献   

19.
The short lifetime of nitric oxide (NO) in vivo impedes its quantitation directly; however, the determination of nitrite and nitrate ions as the end-products of NO oxidation has proven a more practical approach. High-performance ion chromatographic analysis of nitrite in biological fluids is hampered by the large amount of chloride ion (up to 100mmol/l) which results in insufficient peak resolution when utilizing conductimetric detection. Analysis of both anions in small sample volumes is also constrained by the need to minimise sample handling to avoid contamination by environmental nitrate. We report a means to remove Cl ions from small sample volumes using Ag+ resin which facilitates quantitation of either nitrite and nitrate anions in biological samples, using silica or polymer based ion-exchange resins with conductimetric or electrochemical and spectrophotometric detection. Including a reversed-phase guard column before the anion-exchange guard and analytical column also greatly extends column lifetime.  相似文献   

20.
Kuo CY  Chiou SS  Wu SM 《Electrophoresis》2006,27(14):2905-2909
This paper describes approaches for large-volume sample stacking (LVSS) with an EOF pumpin CE for the determination of methotrexate (MTX) and its metabolites in human plasma. After pretreatment of plasma through a SPE cartridge, a large sample volume was loaded by hydrodynamic injection (3 psi, 70 s) into the capillary filled with phosphate buffer (70 mM, pH 6.0) containing 0.01% polyethylene oxide. Following removal of a large plug of sample matrix from the capillary using polarity switching (-25 kV), the separation of anionic analytes was subsequently performed without changing polarity again, achieving an improvement of sensitivity of around a 100-fold. The method was applied to therapeutic drug monitoring of MTX in one acute lymphoblastic leukemia patient. This study is one of very few applications showing the feasibility of LVSS in analysis of biological samples by CE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号