首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The palladium(II) and platinum(II) bis-homoleptic complexes M(C&arcraise;N)(2), where C&arcraise;N is benzo[h]quinoline (H-bhq), 2-phenylpyridine (H-phpy), 2-(2'-benzothienyl)pyridine (H-bthpy), 2-(2'-thienyl)quinoline (H-thq), and 2-(2'-thienyl)pyridine (H-thpy), were prepared by metal exchange of the lithiated ligands C&arcraise;N with M(Et(2)S)(2)Cl(2). The palladium(II) bis-heteroleptic complexes, Pd(C&arcraise;N)(C'&arcraise;N'), were synthesized from Pd(C&arcraise;N)(2) bis-homoleptic complexes, which were converted by HCl into the dichloro-bridged compounds [Pd(C&arcraise;N)Cl](2). By addition of Et(2)S, the Pd(C&arcraise;N)(Et(2)S)Cl complexes were formed, which were allowed to react with Li(C'&arcraise;N'), yielding M(C&arcraise;N)(C'&arcraise;N') compounds. An alternative way for obtaining the bis-heteroleptic molecules is by ligand exchange, according to the equilibrium M(C&arcraise;N)(2) + M(C'&arcraise;N')(2) = 2M(C&arcraise;N)(C'&arcraise;N'). The crystal structures of Pt(bhq)(2) (1) and Pt(thq)(2) (3) present an important distortion of the square planar (SP-4) geometry toward a two-bladed helix. Bis-homoleptic and some bis-heteroleptic complexes of palladium(II) have also been synthesized. In both cases, the steric interactions between the two ligands cause again a helical distortion rather than yielding trans compounds. For cis-bis(benzo[h]quinoline)platinum(II) (1), in the crystal (monoclinic, space group P2(1)/n, a = 13.728(3) ?, b = 6.9537(15) ?, c = 19.701(5) ?, beta = 106.17(2) degrees, Z = 4, rho(calcd) = 2.028 g.cm(-)(3); diffractometer measurements, block-matrix least-squares refinement, R = 0.043, R(w) = 0.047) the average Pt-N and Pt-C distances are 2.151(6) and 1.988(7) ?, respectively. One benzo[h]quinoline ligand is significantly less planar than the other. For cis-bis[2-(2'-thienyl)quinoline]platinum(II) (3), in the crystal (trigonal, space group P3(2)21, a = b = 9.373(1) ?, c = 20.152(3) ?, Z = 3, rho(calcd) = 2.022 g.cm(-)(3); diffractometer measurements, full-matrix least-squares refinement, R = 0.010, R(w) = 0.010) the molecule has C(2) symmetry and is chiral. The Pt-N and Pt-C bond lengths are 2.156(2) and 1.984(3) ?, respectively. The quinoline moitey is not planar but bent about the fused bond by 6.8 degrees. The thiophene moiety is inclined to the best plane through the quinoline moiety by 24.4 degrees.  相似文献   

2.
Complexes of salicylhydroxamic acid (shaH) with palladium(II) and platinum(II) were investigated. The synthesis of [Pt(sha)(2)] was attempted via a number of methods, and ultimately (1)H NMR investigations revealed that salicylhydroxamate would not coordinate to chloro complexes of platinum(II). However, [Pt(sha-H)(PPh(3))(2)] was successfully synthesized and the crystal structure determined (orthorhombic, space group Pca2(1) a = 17.9325(19) A, b = 11.3102(12) A, c = 18.2829(19) A, Z = 4, R = 0.0224). The sha binds via an [O,O] binding mode, in its hydroximate form. In contrast the palladium complex [Pd(sha)(2)] was readily synthesized and crystallized as [Pd(sha)(2)](DMF)(4) in the triclinic space group P(-)1,a = 7.066(1) A, b = 9.842(2) A, c = 12.385(2) A, alpha = 99.213(3)(o), beta = 90.669(3), gamma = 109.767(3)(o), Z = 1, R = 0.037. The unexpected [N,O'] binding mode of the salicylhydroxamate ligand in [Pd(sha)(2)] prompted investigation of the stability of a number of binding modes of salicylhydroxamic acid in [M(sha)(2)] (M = Pd, Pt) by density functional theory, using the B3LYP hybrid functional at the 6-311G* level of theory. Geometry optimizations were carried out for various binding modes of the ligands and their relative energies established. It was found that the [N,O'] mode gave the more stable complex, in accord with experimental observations. Stabilization of hydroxamate binding to platinum is evidently afforded by soft ligands lying trans to them.  相似文献   

3.
A series of palladium(II) and platinum(II) complexes possessing pentafluorophenyl ligands of the general formula [M(L-L)(C6F5)Cl][space](M = Pd 3; L-L=tmeda (N,N,N',N',-tetramethylethylenediamine) a; 1,2-bis(2,6-dimethylphenylimino)ethane) b; dmpe (1,2-bis(dimethylphosphino)ethane) c; dcpe (1,2-bis(dicyclohexylphosphino)ethane) d; Pt ; L-L=tmeda a; 1,2-bis[3,5-bis(trifluoromethyl)phenylimino]-1,2-dimethylethane b; dmpe c; dcpe d) were readily synthesized from the dimer [M(C6F5)(tht)(mu-Cl)2] (M=Pd 1b, Pt 2b; tht=tetrahydrothiophene) and the corresponding bidentate ligand. In the case of palladium, the corresponding iodo analogues (6a-c) were readily synthesized in a one-pot reaction from [Pd2(dba)3], iodopentafluorobenzene, and the appropriate ligand. The platinum complexes 4c-d were then converted to the water complexes [Pt(L-L)(C6F5)(OH2)]OTf (L-L =dmpe 7a; dcpe 7b)via reaction with AgOTf in the presence of water. Attempts to convert the palladium complexes 3c-d to the corresponding water complexes resulted in the disproportionation of the intermediate water complex to form [Pd(L-L)(C6F5)2] (L-L=dmpe 8) or [Pd(L-L)2][OTf]2(L-L=dcpe 9). Upon standing in solution for prolonged periods, complex 7a undergoes an identical disproportionation reaction to the Pd analogues to form [Pt(L-L)(C6F5)2] (L-L=dmpe 10). Complexes 4c and 4d were converted to the corresponding hydrides (11b-c, respectively) using two different hydride sources: 11a was formed by the reaction of with NaBH4 in refluxing THF, while 11b was synthesized in near quantitative yield using [Cp2ZrH2] in refluxing THF. Attempts to synthesize eta2-tetrafluorobenzyne complexes [Pt(L-L)(C6F4)] (L-L=dmpe, dcpe) from reaction of 11a-b with butyllithium were unsuccessful. The molecular structures of 3a,4a, 4c, 4d, 6b, 7a, 8, 11b and have been determined by X-ray crystallographic studies, and are discussed.  相似文献   

4.
The structural characterization of bis-cyclometalated palladium(II) compounds of formula Pd2[(micro-(C6X4)PPh2]2(micro-O2CR)2 [X = H, R = CH3 (3), CF3 (4), C(CH3)3 (5) and C6F5 (6); X = F, R = CH3 (7) and CF3 (8)], has confirmed its paddle wheel structure with two palladium atoms bridged by two acetates and two metalated phosphines in a head-to-tail arrangement. The Pd...Pd distances are in the range 2.6779(16)-2.7229(8) A. Under cyclic voltammetric conditions, compounds 3-6, in CH2Cl2 solution, were found to undergo a reversible oxidation peak in the range of potential values 0.84-1.25 V. A second partially-reversible oxidation is observed at more positive potentials (1.37-1.55 V). For compounds 3-5 in the presence of chlorides, the first oxidation becomes a two-electron process presumably leading to a neutral [Pd(III)-Pd(III)] species with a metal-metal bond.  相似文献   

5.
Two homoleptic pyridyl-functionalized C,N-ortho-chelating aminoaryl platinum(II) complexes, cis-[Pt(eta(2)-C,N)] (3a,b), were prepared via an unconventional method involving the initial synthesis of a bromide-functionalized C,N-chelating aminoaryl platinum(II) precursor complex 8, to which subsequently pyridyl groups were attached via a Suzuki-Miyaura C-C coupling reaction. The electron-donating properties of the pyridyl nitrogen atoms of the resulting complexes (3a,b) were used in complexation reactions with monocationic NCN-pincer (NCN = [C6H3(CH2NMe2)(2-)2,6]-) platinum(II) (11a) and palladium(II) (12a) nitrate complexes [M(NCN)(NO3)], thereby obtaining four trimetallic coordination complexes 16-19. The difference in the pyridine-metal coordination behavior between platinum and palladium was studied by varying the ratios of the reagents and by variable-temperature NMR experiments. IR and Raman analyses of 11a and 12a were performed to determine the coordination behavior of the nitrate counteranion, and it was found that both NO3- and H2O coordinate to the metal centers. The crystal structure determinations of free pyridyl complex 3a, [Pt(NCN)(NO3)] (11a), and [Pt(NCN)(NO3)].(H2O) (11b), as well as the crystal structure of trisplatinum coordination complex 16, are reported.  相似文献   

6.
A new, potentially polydentate sulfur–nitrogen chelating agent, 2,6–bis(N-methyl-S-methyldithiocarbazato)pyridine (L) has been synthesized and characterized. With nickel(II) salts, the ligand yields complexes of empirical formula NiLX2·nH2O (X=Cl−, NCS− or NO3−; n=0 or 1) in which it behaves as a quadridentate NSSN chelating agent, coordinating to the nickel(II) ion via the two amino nitrogen atoms and the two sulfur atoms. Magnetic and spectral evidence support a distorted octahedral structure for these complexes. The ligand reacts with copper(II), platinum(II) and palladium(II) salts to yield homo-binuclear complexes of general formula [M2LX4]·nSol (M=CuII, PtII or PdII; X=Cl− or Br−; n=0.5, 1 or 2; Sol=H2O, MeOH or MeCOMe), in which each of the metal ions is in a square-planar environment. These complexes have been characterized by a variety of physicochemical techniques. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
When the platinum(II) and palladium(II) salts interact with ligands such as cystamine-(mercamine) HSCH2CH2NH2 and 2-mercaptoethanol HSCH2CH2OH under certain conditions, polynuclear complexes of the compositions are obtained: [Pt6(SCH2CH2NH2)8]Cl4. 5H2O and [Pd6(SCH2CH2OH)8]Cl4. In a comparative study of the IR and X-ray spectra of synthesized complexes and ligands, as well as the results of X-ray diffraction studies, it was established that sulfur atoms of 2-mercaptoethanol occupy a bridge position with a mixed coordination of ligands in the palladium complex. In the platinum(II) complex bidentate coordination of ligands is realized through sulfur and nitrogen atoms.  相似文献   

8.
Palladium and platinum complexes with HmtpO (where HmtpO=4,7-dihydro-5-methyl-7-oxo[1,2,4]triazolo[1,5-a]pyrimidine, an analogue of the natural occurring nucleobase hypoxanthine) of the types [M(dmba)(PPh3)(HmtpO)]ClO4[dmba=N,C-chelating 2-(dimethylaminomethyl)phenyl; M=Pd or Pt], [Pd(N-N)(C6F5)(HmtpO)]ClO4[N-N=2,2'-bipyridine (bpy), 4,4'-dimethyl-2,2'-bipyridine (Me2bpy), or N, N, N', N'-tetramethylethylenediamine (tmeda)] and cis-[M(C6F5)2(HmtpO)2] (M=Pd or Pt) (head-to-head atropisomer in the solid state) have been obtained. Pd(II) and Pt(II) complexes with the anion of HmtpO of the types [Pd(tmeda)(C6F5)(mtpO)], [Pd(dmba)(micro-mtpO)] 2, and [NBu4]2[M(C6F5)2(micro-mtpO)]2(M=Pd or Pt) have been prepared starting from the corresponding hydroxometal complexes. Complexes containing simultaneously both the neutral HmtpO ligand and the anionic mtpO of the type [NBu4][M(C6F5)2(HmtpO)(mtpO)] (M=Pd or Pt) have been also obtained. In these mtpO-HmtpO metal complexes, for the first time, prototropic exchange is observed between the two heterocyclic ligands. The crystal structures of [Pd(dmba)(PPh 3)(HmtpO)]+, cis-[Pt(C6F5)2(HmtpO)2].acetone, [Pd(C6F5)(tmeda)(mtpO)].2H2O, [Pd(dmba)(micro-mtpO)]2, [NBu4]2[Pd(C6F5)2(micro-mtpO)]2.CH2Cl2.toluene, [NBu4]2[Pt(C6F5)2(micro-mtpO)](2).0.5(toluene), and [NBu4][Pt(C6F5)2(mtpO)(HmtpO)] have been established by X-ray diffraction. Values of IC50 were calculated for the new platinum complexes cis-[Pt(C6F5)2(HmtpO)2] and [Pt(dmba)(PPh3)(HmtpO)]ClO4 against a panel of human tumor cell lines representative of ovarian (A2780 and A2780 cisR), lung (NCI-H460), and breast cancers (T47D). At 48 h incubation time, both complexes were about 8-fold more active than cisplatin in T47D and show very low resistance factors against an A2780 cell line, which has acquired resistance to cisplatin. The DNA adduct formation of cis-[Pt(C6F5)2(HmtpO)2] and [Pt(dmba)(PPh3)(HmtpO)]ClO4 was followed by circular dichroism and electrophoretic mobility. Atomic force microscopy images of the modifications caused by these platinum complexes on plasmid DNA pB R322 were also obtained.  相似文献   

9.
Some metal complexes of Schiff bases have been prepared by the interactions of palladium(II) and platinum(II) chloride with 5-chloro-1,3-dihydro-3-[2-(phenyl)-ethylidene]-2H-indol-2-one-hydrazinecarbothioamide(L1H) and 5-chloro-1,3-dihydro-3-[2-(phenyl)-ethylidene]-2H-indol-2-one-hydrazinecarboxamide(L2H), in bimolar ratios. All the new compounds have been characterized by elemental analyses, conductance measurements, molecular weight determinations, IR and 1H NMR spectral studies. The spectral data are consistent with a square planar geometry around Pd(II) and Pt(II) in which the ligands act as neutral bidentate and monobasic bidentate ligands, coordinating through the nitrogen and sulfur/oxygen atoms. Free ligands and their metal complexes were screened for their antimicrobial activity on different species of pathogenic fungi and bacteria and their biopotency has been discussed.  相似文献   

10.
The coordination chemistry of the N-substituted arylamido ligands [N(R)(C6H3R'2-2,6)] [R = SiMe3, R' = Me (L1); R = CH2But, R' = Pri (L2)] toward FeII and CoII ions was studied. The monoamido complexes [M(L1)(Cl)(tmeda)] [M = Fe (1), Co (2)] react readily with MeLi, affording the mononuclear, paramagnetic iron(II) and cobalt(II) methyl-arylamido complexes [M(L1)(Me)(tmeda)] [M = Fe (3), Co (4)]. Treatment of 2:1 [Li(L2)(THF)2]/FeCl2 affords the unusual two-coordinate iron(II) bis(arylamide) [Fe(L2)2] (5).  相似文献   

11.
A novel method is reported for generation of the difficult-to-obtain (imine)Pt(II) compounds that involves reduction of the corresponding readily available Pt(IV)-based imines by carbonyl-stabilized phosphorus ylides, Ph3P=CHCO2R, in nonaqueous media. The reaction between neutral (imino)Pt(IV) compounds [PtCl4[NH=C(Me)ON=CR1R2]2] [R1R2 = Me2, (CH2)4, (CH2)5, (Me)C(Me)=NOH], [PtCl4[NH=C(Me)ONR2]2] (R = Me, Et, CH2Ph), (R1 = H; R2 = Ph or C6H4Me; R3 = Me) as well as anionic-type platinum(IV) complexes (Ph3PCH2Ph)[PtCl5[NH=C(Me)ON=CR2]] [R2 = Me2, (CH2)4, (CH2)5] and 1 equiv of Ph3P=CHCO2R (R = Me, Et) proceeds under mild conditions (ca. 4 h, room temperature) to give selectively the platinum(II) products (in good to excellent isolated yields) without further reduction of the platinum center. All thus prepared compounds (excluding previously described Delta4-1,2,4-oxadiazoline complexes) were characterized by elemental analyses, FAB mass spectrometry, IR and 1H, 13C[1H], 31P[1H] and 195Pt NMR spectroscopies, and X-ray single-crystal diffractometry, the latter for [PtCl2[NH=C(Me)ON=CMe2]2] [crystal system tetragonal, space group P4(2)/n (No. 86), a = b = 10.5050(10) A, c = 15.916(3) A] and (Ph3PCH2CO2Me)[PtCl3(NCMe)] [crystal system orthorhombic, space group Pna2(1) (No. 33), a = 19.661(7) A, b = 12.486(4) A, c = 10.149(3) A]. The reaction is also extended to a variety of other Pt(II)/Pt(IV) couples, and the ylides Ph3P=CHCO2R are introduced as mild and selective reducing agents of wide applicability for the conversion of Pt(IV) to Pt(II) species in nonaqueous media, a route that is especially useful in the case of compounds that cannot be prepared directly from Pt(II) precursors, and for the generation of systematic series of Pt(II)/Pt(IV) complexes for biological studies.  相似文献   

12.
Three new monomeric complexes of palladium(II) azide with 2‐chloropyridine ( 1 ), 3‐chloropyridine ( 2 ), and quinoline ( 3 ), have been synthesized by reaction of palladium nitrate and the respective Lewis‐base with sodium azide in a water/acetone mixture. All three compounds were characterized by IR, Raman, and multinuclear NMR spectroscopy. The composition of the complexes were confirmed by elemental analysis. The spectroscopic investigations confirm terminal azide ligands in trans position. Complex 3 was also characterized by crystallographic methods. Each palladium atom of 3 is surrounded in a distorted square planar fashion by 4 nitrogen atoms. The terminal azide ligands are in trans position.  相似文献   

13.
The reaction of 2-(1-naphthyl)benzothiazoline with palladium(II) acetate leads to helical mononuclear and orthometalated tetranuclear products. The molecular structures of mononuclear palladium(II) [Pd(H1-nabz)(2)] (1) (H(2)1-nabz = 2-N-(1-naphthylmethylideneamino)benzenethiolate), tetranuclear palladium(II) [Pd(4)(1-nabz)(4)] (2) and tetranuclear platinum(II) [Pt(4)(1-nabz)(4)] (3) have been determined by single-crystal X-ray diffraction method. Crystal data for complex 1 are as follows: a = 14.208(3) ?, b = 18.227(4) ?, c = 14.398(8) ?; beta = 94.55(3) degrees; V = 3717.0(23) ?(3); space group = P2(1)/n, Z = 4. Crystal data for the complex 2 are as follows: a = b = 15.798(3) ?, c = 23.728(4) ?; V = 5921.7(20) ?(3); space group = I4(1)/a, Z = 16 for the Pd(1-nabz) unit. Crystal data for the complex 3 are as follows: a = b = 15.496(2) ?, c = 24.348(3) ?; V = 5846.3(20) ?(3); space group = I4(1)/a, Z = 16 for the Pt(1-nabz) unit. The mononuclear palladium(II) complex reveals short ortho-hydrogen.palladium distances of 2.66(7) and 2.48(7) ?. These short distances and (1)H NMR studies provide a M.H-C interaction which can be regarded as a three-center four-electron interaction. The molecular structures of 2 and 3 confirm the formation of unusual tetranuclear compounds featuring a rare C,N,S-tridentate ligand derived from orthometalation of pendant side arm. The structural and chemical properties of the mononuclear palladium(II) complex 1 clearly suggest that 1 is a potential intermediate in the formation of the tetranuclear complex 2 by orthometalation reactions.  相似文献   

14.
By reaction of [NBu(4)](2)[Pt(2)(&mgr;-C(6)F(5))(2)(C(6)F(5))(4)] with 1,8-naphthyridine (napy), [NBu(4)][Pt(C(6)F(5))(3)(napy)] (1) is obtained. This compound reacts with cis-[Pt(C(6)F(5))(2)(THF)(2)] to give the dinuclear derivative [NBu(4)][Pt(2)(&mgr;-napy)(&mgr;-C(6)F(5))(C(6)F(5))(4)] (2). The reaction of several HX species with 2 results in the substitution of the bridging C(6)F(5) by other ligands (X) such as OH (3), Cl (4), Br (5), I (6), and SPh (7), maintaining in all cases the naphthyridine bridging ligand. The structure of 3 was determined by single-crystal X-ray diffraction. The compound crystallizes in the monoclinic system, space group P2(1)/n, with a = 12.022(2) ?, b = 16.677(3) ?, c = 27.154(5) ?, beta = 98.58(3) degrees, V = 5383.2(16) ?(3), and Z = 4. The structure was refined to residuals of R = 0.0488 and R(w) = 0.0547. The complex consists of two square-planar platinum(II) fragments sharing a naphthyridine and OH bridging ligands, which are in cis positions. The short Pt-Pt distance [3.008(1) ?] seems to be a consequence of the bridging ligands.  相似文献   

15.
Two series of square planar, diamagnetic, neutral complexes of nickel(II), palladium(II), and platinum(II) containing two N,N-coordinated o-diiminobenzosemiquinonate(1-) pi radical ligands have been synthesized and characterized by UV-vis and (1)H NMR spectroscopy: [M(II)((2)L(ISQ))(2)], M = Ni (1), Pd (2), Pt (3), and [M(II)((3)L(ISQ))(2)] M = Ni (4), Pd (5), Pt (6). H(2)[(2)L(PDI)] represents 3,5-di-tert-butyl-o-phenylenediamine and H(2)[(3)L(PDI)] is N-phenyl-o-phenylenediamine; (L(ISQ))(1-) is the o-diiminobenzosemiquinonate pi radical anion, and (L(IBQ))(0) is the o-diiminobenzoquinone form of these ligands. The structures of complexes 1, 4, 5, and 6 have been (re)determined by X-ray crystallography at 100 K. Cyclic voltammetry established that the complete electron-transfer series consisting of a dianion, monoanion, neutral complex, a mono- and a dication exists: [M(L)(2)](z)z = -2, -1, 0, 1+, 2+. Each species has been electrochemically generated in solution and their X-band EPR and UV-vis spectra have been recorded. The oxidations and reductions are invariably ligand centered. Two o-diiminobenzoquinones(0) and two fully reduced o-diiminocatecholate(2-) ligands are present in the dication and dianion, respectively, whereas the monocations and monoanions are delocalized mixed valent class III species [M(II)(L(ISQ))(L(IBQ))](+) and [M(II)(L(ISQ))(L(PDI))](-), respectively. One-electron oxidations of 1 and trans-6 yield the diamagnetic dications [cis-[Ni(II)((2)L(ISQ))((2)L(IBQ))](2)]Cl(2) (7) and [trans-[Pt(II)((3)L(ISQ))((3)L(IBQ))](2)](CF(3)SO(3))(2) (8), respectively, which have been characterized by X-ray crystallography; both complexes possess a weak M.M bond and the ligands adopt an eclipsed configuration due to weak bonding interactions via pi stacking.  相似文献   

16.
The previously synthesised Schiff-base ligands 2-(2-Ph(2)PC(6)H(4)N[double bond, length as m-dash]CH)-R'-C(6)H(3)OH (R'= 3-OCH(3), HL(1); 5-OCH(3), HL(2); 5-Br, HL(3); 5-Cl, HL(4)) were prepared by a faster, more efficient route involving a microwave assisted co-condensation of 2-(diphenylphosphino)aniline with the appropriate substituted salicylaldehyde. HL(1-4) react directly with M(II)Cl(2)(M = Pd, Pt) or Pt(II)I(2)(cod) affording neutral square-planar complexes of general formula [M(II)Cl(eta(3)-L(1-4))](M = Pd, Pt, 1-8) and [Pt(II)I(eta(3)-L(1-4))](M = Pd, Pt, 9-12). Reaction of complexes 1-4 with the triarylphosphines PR(3)(R = Ph, p-tolyl) gave the novel ionic complexes [Pd(II)(PR(3))(eta(3)-L(1-4))]ClO(4)(13-20). Substituted platinum complexes of the type [Pt(II)(PR(3))(eta(3)-L(1-4))]ClO(4)(R = P(CH(2)CH(2)CN)(3)21-24) and [Pt(II)(P(p-tolyl)(3))(eta(3)-L(3,4))]ClO(4)( 25 and 26 ) were synthesised from the appropriate [Pt(II)Cl(eta(3)-L(1-4))] complex (5-8) and PR(3). The complexes are characterised by microanalytical and spectroscopic techniques. The crystal structures of 3, 6, 10, 15, 20 and 26 were determined and revealed the metal to be in a square-planar four-coordinate environment containing a planar tridentate ligand with an O,N,P donor set together with one further atom which is trans to the central nitrogen atom.  相似文献   

17.
Pd(II) and Pt(II) complexes with the anions of the model nucleobases 1-methylthymine (1-MethyH), 1-methyluracil (1-MeuraH), and 1-methylcytosine (1-MecytH) of the types [Pd(dmba)(mu-L)]2 [dmba = N,C-chelating 2-((dimethylamino)methyl)phenyl; L = 1-Methy, 1-Meura or 1-Mecyt] and [M(dmba)(L)(L')] [L = 1-Methy or 1-Meura; L' = PPh(3) (M = Pd or Pt), DMSO (M = Pt)] have been obtained. Palladium complexes of the types [Pd(C6F5)(N-N)(L)] [L = 1-Methy or 1-Meura; N-N = N,N,N',N'-tetramethylethylenediamine (tmeda), 2,2'-bipyridine (bpy), or 4,4'-dimethyl-2,2'-bipyridine (Me2bpy)] and [NBu4][Pd(C6F5)(1-Methy)2(H2O)] have also been prepared. The crystal structures of [Pd(dmba)(mu-1-Methy)]2, [Pd(dmba)(mu-1-Mecyt)]2.2CHCl3, [Pd(dmba)(1-Methy)(PPh3)].3CHCl3, [Pt(dmba)(1-Methy)(PPh3)], [Pd(tmeda)(C6F5)(1-Methy)], and [NBu4][Pd(C6F5)(1-Methy)2(H2O)].H2O have been established by X-ray diffraction. The DNA adduct formation of the new platinum complexes synthesized was followed by circular dichroism and electrophoretic mobility. Atomic force microscopy images of the modifications caused by the platinum complexes on plasmid DNA pBR322 were also obtained. Values of IC50 were also calculated for the new platinum complexes against the tumor cell line HL-60. All the new platinum complexes were more active than cisplatin (up to 20-fold in some cases).  相似文献   

18.
Three palladium (II) complexes with the isonitrosobenzoylacetoneimine (HIBI) ligand, Pd (p‐CH3C6H4IBI)2 (1), Pd (C6H5IBI)2 (2) and Pd2Cl2 (C6H5CH2IBI)2 · CHCl3 (3), were prepared and characterized by IR, Raman and X‐ray diffraction studies. The geometries around the palladium atoms in the complexes 1 and 2 are distorted trans‐PdN4 square planes, and the Schiff base ligands RIBI? are coordinated through their oximo‐nitrogen atoms and imino‐nitrogen atoms. The week Pd…H? C agostic interactions [Pd…H = 0.2764 nm] complete the hexacoordinate environment around palladium in the complex 1. The octahedral deformation of the classical square planar environment of the Pd atom is due to the week Pd…O (1b) interactions [Pd? O (1b) = 0.3157 (9) nm] in the complex 2. The complex 3 is a first example of binuclear complex with isonitrosoketoimine ligands, in which one of oximo groups is coordinated through oximo‐nitrogen and oximo‐oxygen atoms.  相似文献   

19.
The substituted bis(pyrazolyl)methane ligands RCH(3,5-Me2pz)2(R=SiMe3, CH2Ph, G1, G2, and G3; Gn=Fréchet-type dendritic wedges of generation n) have been prepared starting from H2C(3,5-Me2pz)2. Reaction of these didentate ligands with [NiBr2(DME)] is a straightforward procedure that allows the synthesis of the nickel(II) complexes [NiBr2{RCH(3,5-Me2pz)2}]. The molecular structure of compound (R=CH2Ph) has been determined by X-ray diffraction studies. The nickel centre coordinates two bromine and two nitrogen atoms in a tetrahedral environment, and the metallacycle Ni(NN)2C adopts a boat conformation with the benzyl group in an axial position. 1H NMR studies have been carried out to characterize these paramagnetic nickel compounds in solution. Valuable information about the disposition of the ligands and dendritic wedges in solution has been obtained thanks to the influence of the paramagnetic centre on the proton resonances.  相似文献   

20.
The ligand (S,S)-1,1,4,7,10,10-hexaphenyl-1,4,7,10-tetraphosphadecane, (S,S)-tetraphos, reacts with hexa(aqua)nickel(II) chloride in the presence of trimethylsilyl triflate (TMSOTf) in dichloromethane to give the yellow square-planar complex [Ni{(R,R)-tetraphos}](OTf)2, which has been crystallographically characterized as the square-pyramidal, acetonitrile adduct [Ni(NCMe){(R,R)-tetraphos}]OTf. Cyclic voltammograms of the nickel(II) complex in dichloromethane and acetonitrile at 20 degrees C showed two reduction processes at negative potentials with oxidative (E(p)(ox)) and reductive (E(p)(red)) peak separations similar to those observed for ferrocene/ferrocenium under identical conditions, suggesting two one-electron steps. The cyclic voltammetric data for the divalent nickel complex in acetonitrile at temperatures below -20 degrees C were interpreted according to reversible coordination of acetonitrile to the nickel(I) and nickel(0) complexes. The divalent palladium and platinum complexes [M{(R,R)-tetraphos}](PF6)2 and [M2{(R,R)-tetraphos}2](OTf)4 have been prepared. The reduction potentials for the complexes [M{(R,R)-tetraphos}](PF6)2 increase in the order nickel(II) < palladium(II) < platinum(II). The reaction of (S,S)-tetraphos with bis(cycloocta-1,5-diene)nickel(0) in benzene affords orange [Ni{(R,R)-tetraphos}], which slowly rearranges into the thermodynamically more stable, yellow, double-stranded helicate [Ni2{(R,R)-tetraphos}2]; the crystal structures of both complexes have been determined. The reactions of (S,S)-tetraphos with [M(PPh3)4] in toluene (M = Pd) or benzene (M = Pt) furnish the double-stranded helicates [M2{(R,R)-tetraphos}2]; the palladium complex crystallizes from hot benzene as the 2-benzene solvate and was structurally characterized by X-ray crystallography. In each of the three zerovalent complexes, the coordinated (R,R)-tetraphos stereospecifically generates tetrahedral M(PP)2 stereocenters of M configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号