首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two novel coordination polymers, UO2(C5H2N2O4)(H2O) (1) and (UO2)Cu(C5H2N2O4)2(H2O)2 (2), have been prepared by the hydrothermal reaction of uranyl nitrate hexahydrate [(UO2(NO3)2.6H2O], 3,5-pyrazoledicarboxylic acid (H3pdc) and copper(II) nitrate hemipentahydrate (Cu(NO3)2.2.5H2O) and characterized by single-crystal X-ray diffraction, thermogravimetric analyses (TGA) and fluorescence spectroscopy. Compound 1 (monoclinic, P2(1)/c, a=6.9556(6)A, b=11.302(1)A, c= 10.5288(9)A, beta=90.057(2) degrees and Z=4) consists of a two-dimensional sheet containing uranyl hexagonal bipyramids. Compound 2 (triclinic, P-1, a=5.1014(7)A, b=7.6067(11)A, c=10.2910(15)A, alpha=72.380(3) degrees, beta=86.796(3) degrees, gamma=84.447(3) degrees and Z=1) consists of two-dimensional sheets. Both structures contain the linear UO2(2+) moiety and have extended networks built up from the H3pdc ligand. Compound 1 exhibits the characteristic UO(2)2+ emission spectra when it is excited at the ligand or uranium excitation wavelength. With the addition of the copper metal center in compound 2, the uranium emission is absent regardless of the excitation wavelength.  相似文献   

2.
The hydrothermal reaction of phosphonoacetic acid (H2PO3CH2C(O)OH, PAA) with UO3 and Cu(C2H3O2)2 .H2O results in the formation of the crystalline heterobimetallic uranium(VI)/copper(II) phosphonates UO2Cu(PO3CH2CO2)(OH)(H2O)2 ( UCuPAA-1), (UO2) 2Cu(PO3CH2CO2)2(H2O)3 (UCuPAA-2), and [H3O][(UO2) 2Cu2(PO3CH2CO2)3(H2O)2 ( UCuPAA-3). The addition of sodium hydroxide to the aforementioned reactions results in the formation of Na[UO2(PO3CH2CO2)].2H2O (NaUPAA-1). These compounds display 1D (UCuPAA-1), 2D (UCuPAA-2, NaUPAA-1), and 3D (UCuPAA-3) architectures wherein the phosphonate portion of the ligand primarily coordinates the uranium(VI) centers; whereas the carboxylate moiety preferentially, but not exclusively, binds to the copper(II) ions. Fluorescence measurements on all four compounds demonstrate that the presence of copper(II) mostly quenches the emission from the uranyl moieties.  相似文献   

3.
A novel uranium heteropolyoxometalate, [H(3)O](4)[Ni(H(2)O)(3)](4){Ni[(UO(2))(PO(3)C(6)H(4)CO(2))](3)(PO(4)H)}(4)·2.72H(2)O, has been prepared under mild hydrothermal conditions using the diethyl(2-ethoxycarbonylphenyl)phosphonate ligand and in situ ligand synthesis of the HPO(4)(2-) anion. The cluster is derived from a common UO(7), pentagonal bipyramid and is constructed by employing nickel(II) metal ions as linkers. The 3d-5f heteropolyoxometalate core incorporates 12 classical pentagonal uranyl groups and four Ni(2+) octahedral units.  相似文献   

4.
Three series of mixed uranyl-lanthanide (Ce or Nd) carboxylate coordination polymers have been successfully synthesized by means of a hydrothermal route using either conventional or microwave heating methods. These compounds have been prepared from mixtures of uranyl nitrate, lanthanide nitrate together with phthalic acid (1,2), pyromellitic acid (3,4), or mellitic acid (5,6) in aqueous solution. The X-ray diffraction (XRD) single-crystal revealed that the phthalate complex (UO(2))(4)O(2)Ln(H(2)O)(7)(1,2-bdc)(4)·NH(4)·xH(2)O (Ln = Ce(1), Nd(2); x = 1 for 1, x = 0 for 2), is based on the connection of tetranuclear uranyl-centered building blocks linked to discrete monomeric units LnO(2)(H(2)O)(7) via the organic species to generate infinite chains, intercalated by free ammonium cations. The pyromellitate phase (UO(2))(3)Ln(2)(H(2)O)(12)(btec)(3)·5H(2)O (Ce(3), Nd(4)) contains layers of monomeric uranyl-centered hexagonal and pentagonal bipyramids linked via the carboxylate arms of the organic molecules. The three-dimensionality of the structure is ensured by the connection of remaining free carboxylate groups with isolated monomeric units LnO(2)(H(2)O)(7). The network of the third series (UO(2))(2)(OH)Ln(H(2)O)(7)(mel)·5H(2)O (Ce(5), Nd(6)) is built up from dinuclear uranyl units forming layers through connection with the mellitate ligands, which are further linked to each other through discrete monomers LnO(3)(H(2)O)(6). The thermal decomposition of the various coordination complexes led to the formation of mixed uranium-lanthanide oxide, with the fluorite-type structure at 1500 °C (for 1, 2) or 1400 °C for 3-6. Expected U/Ln ratio from the crystal structures were observed for compounds 1-6.  相似文献   

5.
The combination of remote/standoff sensing and laser-induced fluorescence (LIF) spectroscopy shows potential for detection of uranyl (UO2(2+)) compounds. Uranyl compounds exhibit characteristic emission in the 450-600 nm (22,200 to 16,700 cm(-1)) spectral region when excited by wavelengths in the ultraviolet or in the short-wavelength portion of the visible spectrum. We report a parametric study of the effects of excitation wavelength [including 532 nm (18,797 cm(-1)), 355 nm (28,169 cm(-1)), and 266 nm (37,594 cm(-1))] and excitation laser power on solid-state uranium compounds. The uranium compounds investigated include uranyl nitrate, uranyl sulfate, uranyl oxalate, uranium dioxide, triuranium octaoxide, uranyl acetate, uranyl formate, zinc uranyl acetate, and uranyl phosphate. We observed the characteristic uranyl fluorescence spectrum from the uranium compounds except for uranium oxide compounds (which do not contain the uranyl moiety) and for uranyl formate, which has a low fluorescence quantum yield. Relative uranyl fluorescence intensity is greatest for 355 nm excitation, and the order of decreasing fluorescence intensity with excitation wavelength (relative intensity/laser output) is 355 nm > 266 nm > 532 nm. For 532 nm excitation, the emission spectrum is produced by two-photon excitation. Uranyl fluorescence intensity increases linearly with increasing laser power, but the rate of fluorescence intensity increase is different for different emission bands.  相似文献   

6.
Bo QB  Wang HY  Wang DQ  Zhang ZW  Miao JL  Sun GX 《Inorganic chemistry》2011,50(20):10163-10177
In attempts to investigate whether the photoluminescence properties of the Zn-based heterometal-organic frameworks (MOFs) could be tuned by doping different Ln(3+) (Ln = Sm, Eu, Tb) and Mn(2+) ions, seven novel 3D homo- and hetero-MOFs with a rich variety of network topologies, namely, [Zn(mip)](n) (Zn-Zn), [Zn(2)Mn(OH)(2)(mip)(2)](n) (Zn-Mn), [Mn(2)Mn(OH)(2)(mip)(2)](n) (Mn-Mn), [ZnSm(OH)(mip)(2)](n) (Zn-Sm), [ZnEu(OH)(mip)(2)](n) (Zn-Eu1), [Zn(5)Eu(OH)(H(2)O)(3)(mip)(6)·(H(2)O)](n) (Zn-Eu2), and [Zn(5)Tb(OH)(H(2)O)(3)(mip)(6)](n) (Zn-Tb), (mip = 5-methylisophthalate dianion), have been synthesized hydrothermally based on a single 5-methylisophthalic acid ligand. All compounds are fully structurally characterized by elemental analysis, FT-IR spectroscopy, TG-DTA analysis, single-crystal X-ray diffraction, and X-ray powder diffraction (XRPD) techniques. The various connectivity modes of the mip linkers generate four types of different structures. Type I (Zn-Zn) is a 3D homo-MOF with helical channels composed of Zn(2)(COO)(4) SBUs (second building units). Type II (Zn-Mn and Mn-Mn) displays a nest-like 3D homo- or hetero-MOF featuring window-shaped helical channels composed of Zn(4)Mn(2)(OH)(4)(COO)(8) or Mn(4)Mn(2)(OH)(4)(COO)(8) SBUs. Type III (Zn-Sm and Zn-Eu1) presents a complicated corbeil-like 3D hetero-MOF with irregular helical channels composed of (SmZnO)(2)(COO)(8) or (EuZnO)(2)(COO)(8) heterometallic SBUs. Type IV (Zn-Eu2 and Zn-Tb) contains a heterometallic SBU Zn(5)Eu(OH)(COO)(12) or Zn(5)Tb(OH)(COO)(12), which results in a 3D hetero-MOF featuring irregular channels impregnated by parts of the free and coordinated water molecules. Photoluminescence properties indicate that all of the compounds exhibit photoluminescence in the solid state at room temperature. Compared with a broad emission band at ca. 475 nm (λ(ex) = 380 nm) for Zn-Zn, compound Zn-Mn exhibits a remarkably intense emission band centered at 737 nm (λ(ex) = 320 nm) due to the characteristic emission of Mn(2+). In addition, the fluorescence intensity of compound Zn-Mn is stronger than that of Mn-Mn as a result of Zn(2+) behaving as an activator for the Mn(2+) emission. Compound Zn-Sm displays a typical Sm(3+) emission spectrum, and the peak at 596 nm is the strongest one (λ(ex) = 310 nm). Both Zn-Eu1 and Zn-Eu2 give the characteristic emission transitions of the Eu(3+) ions (λ(ex) = 310 nm). Thanks to the ambient different crystal-field strengths, crystal field symmetries, and coordinated bonds of the Eu(3+) ions in compounds Zn-Eu1 and Zn-Eu2, the spectrum of the former compound is dominated by the (5)D(0) → (7)F(2) transition (612 nm), while the emission of the (5)D(0) → (7)F(4) transition (699 nm) for the latter one is the most intense. Compound Zn-Tb emits the characteristic Tb(3+) ion spectrum dominated by the (5)D(4) → (7)F(5) (544 nm) transition. Upon addition of the different activated ions, the luminescence lifetimes of the compounds are also changed from the nanosecond (Zn-Zn) to the microsecond (Zn-Mn, Mn-Mn, and Zn-Sm) and millisecond (Zn-Eu1, Zn-Eu2, and Zn-Tb) magnitude orders. The structure and photoluminescent property correlations suggest that the presence of Mn(2+) and Ln(3+) ions can activate the Zn-based hetero-MOFs to emit the tunable photoluminescence.  相似文献   

7.
Multiple-stage tandem mass spectrometry was used to characterize the dissociation pathways for complexes composed of (1) the uranyl ion, (2) nitrate or hydroxide, and (3) water or alcohol. The complex ions were derived from electrospray ionization (ESI) of solutions of uranyl nitrate in H2O or mixtures of H2O and alcohol. In general, collisional induced dissociation (CID) of the uranyl complexes resulted in elimination of coordinating water and alcohol ligands. For undercoordinated complexes containing nitrate and one or two coordinating alcohol molecules, the elimination of nitric acid was observed, leaving an ion pair composed of the uranyl cation and an alkoxide. For complexes with coordinating water molecules, MS(n) led to the generation of either [UO2(2+)OH-] or [UO2(2+)NO3(-)]. Subsequent CID of [UO2(2+)OH-] produced UO2(+). The base peak in the spectrum generated by the dissociation of [UO2(2+)NO3(-)], however, was an H2O adduct to UO2(+). The abundance of the species was greater than expected based on previous experimental measurements of the (slow) hydration rate for UO2(+) when stored in the ion trap. To account for the production of the hydrated product, a reductive elimination reaction involving reactive collisions with water in the ion trap is proposed.  相似文献   

8.
Liu B  Li BL  Li YZ  Chen Y  Bao SS  Zheng LM 《Inorganic chemistry》2007,46(21):8524-8532
Two types of lanthanide diruthenium phosphonate compounds, based on the mixed-valent metal-metal bonded paddlewheel core of Ru(2)(hedp)(2)(3-) [hedp = 1-hydroxyethylidenediphosphonate, CH(3)C(OH)(PO(3))(2)], have been prepared with the formulas Ln(H(2)O)4[Ru(2)(hedp)(2)(H(2)O)2].5.5H(2)O (1.Ln, Ln = La, Ce) and Ln(H(2)O)4[Ru(2)(hedp)(2)(H(2)O)(2)].8H(2)O (2.Ln, Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er). In both types, each Ru(2)(hedp)2(H2O)23- unit is linked by four Ln(3+)ions through four phosphonate oxygen (OP) atoms and vice versa. The geometries of the {LnO(P4)} group, however, are different in the two cases. In 1.Ln, the geometry of {LnO(P4)} is closer to a distorted plane, and thus a square-grid layer structure is found. In 2.Ln, the geometry of {LnO(P4)} is better described as a distorted tetrahedron; hence, a unique PtS-type open-framework structure is observed. The channels generated in structures 2.Ln are filled with water aggregates with extensive hydrogen-bond interactions. The magnetic and electrochemical properties are also investigated.  相似文献   

9.
The complexation between uranium(vi) and nitrate ions in a hydrophobic ionic liquid (IL), namely [BMI][NO(3)] (BMI = 1-butyl-3-methylimidazolium(+)), is investigated by EXAFS spectroscopy. It was performed by dissolution of uranyl nitrate UO(2)(NO(3))(2)·6H(2)O or UO(2)(Tf(2)N)(2) (Tf(2)N = bis(trifluoromethylsulfonyl)imide (CF(3)SO(2))(2)N(-)). The formation of the complex UO(2)(NO(3))(4)(2-) is evidenced.  相似文献   

10.
Szabó and Grenthe (Inorg. Chem. 2007, 46, 9372-9378) suggested from NMR spectroscopy that the "yl"-oxygen exchange in dioxo uranium(VI) ion in acidic solution occurs via an OH-bridged binuclear complex (UO(2))(2)(μ-OH)(2)(2+). Here, an "yl"-oxygen exchange pathway involving the (UO(2))(2)(μ-OH)(2)(2+) is studied by B3LYP density functional theory calculations. The oxygen exchange takes place via an intramolecular proton shuttle between the oxygen atoms in (UO(2))(2)(μ-OH)(2)(H(2)O)(6)(2+). The direct proton transfer from the hydroxo bridge or from the coordinating water to the "yl"-oxygen in (UO(2))(2)(μ-OH)(2)(H(2)O)(6)(2+) appears to be negligible because of an exceedingly high activation barrier (~170 kJ mol(-1)). The exchange mechanism in (UO(2))(2)(μ-OH)(2)(H(2)O)(6)(2+) can be described by a multistep pathway that leads to the formation of an oxo bridge between two uranyl(VI) centers (U-O(yl)-U bridge). The activation enthalpy Δ(?)H of the reaction obtained at the B3LYP level is 94.7 kJ mol(-1) and is somewhat larger than the experimental value of 80 ± 14 kJ mol(-1). However, the discrepancy between theory and experiment is at the acceptable level. The formation of an oxo bridge between the two uranyl(VI) centers was found to be the key step in proton shuttling, indicating that uranyl(VI) complexes with a stable oxo bridge (such as trinuclear (UO(2))(3)(μ(3)-O)(OH)(3)(+)) may have even faster "yl"-oxygen exchange rates than (UO(2))(2)(μ-OH)(2)(2+).  相似文献   

11.
To tune the lanthanide luminescence in related molecular structures, we synthesized and characterized a series of lanthanide complexes with imidazole-based ligands: two tripodal ligands, tris{[2-{(1-methylimidazol-2-yl)methylidene}amino]ethyl}amine (Me(3)L), and tris{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(3)L), and the dipodal ligand bis{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(2)L). The general formulas are [Ln(Me(3)L)(H(2)O)(2)](NO(3))(3)·3H(2)O (Ln = 3+ lanthanide ion: Sm (1), Eu (2), Gd (3), Tb (4), and Dy (5)), [Ln(H(3)L)(NO(3))](NO(3))(2)·MeOH (Ln(3+) = Sm (6), Eu (7), Gd (8), Tb (9), and Dy (10)), and [Ln(H(2)L)(NO(3))(2)(MeOH)](NO(3))·MeOH (Ln(3+) = Sm (11), Eu (12), Gd (13), Tb (14), and Dy (15)). Each lanthanide ion is 9-coordinate in the complexes with the Me(3)L and H(3)L ligands and 10-coordinate in the complexes with the H(2)L ligand, in which counter anion and solvent molecules are also coordinated. The complexes show a screw arrangement of ligands around the lanthanide ions, and their enantiomorphs form racemate crystals. Luminescence studies have been carried out on the solid and solution-state samples. The triplet energy levels of Me(3)L, H(3)L, and H(2)L are 21?000, 22?700, and 23?000 cm(-1), respectively, which were determined from the phosphorescence spectra of their Gd(3+) complexes. The Me(3)L ligand is an effective sensitizer for Sm(3+) and Eu(3+) ions. Efficient luminescence of Sm(3+), Eu(3+), Tb(3+), and Dy(3+) ions was observed in complexes with the H(3)L and H(2)L ligands. Ligand modification by changing imidazole groups alters their triplet energy, and results in different sensitizing ability towards lanthanide ions.  相似文献   

12.
Electrospray ionization (ESI) of uranyl nitrate solutions generates a wide variety of positively and negatively charged ions, including complex adducts of uranyl ions with methoxy, hydroxy, and nitrate ligands. In the positive ion mode, ions detected by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry are sensitive to instrumental tuning parameters such as quadrupole operating frequency and trapping time. Positive ions correspond to oligomeric uranyl nitrate species that can be characterized as having a general formula of [(UO(2))(n)(A)(m)(CH(3)OH)(s)](+) or [(UO(2))(n)(O)(A)(m)(CH(3)OH)(s)](+) with n = 1-4, m = 1-7, s = 0 or 1, and A = OH, NO(3), CH(3)O or a combination of these, although the formation of NO(3)-containing species is preferred. In the negative ion mode, complexes of the form [(UO(2))(NO(3))(m)](-) (m = 1-3) are detected, although the formation of the oxo-containing ions [(UO(2))(O)(n)(NO(3))(m)](-) (n = 1-2, m = 1-2) and the hydroxy-containing ions [(UO(2))(OH)(n)(NO(3))(m)](-) (n = 1-2, m = 0-1) are also observed. The extent of coordinative unsaturation of both positive and negative ions can be determined by ligand association/exchange and H/D exchange experiments using D(2)O and CD(3)OD as neutral reaction partners in the gas-phase. Positive ions are of varying stability and reactivity and may fragment extensively upon collision with D(2)O, CD(3)OD and N(2) in sustained off-resonance irradiation/collision-induced dissociation (SORI-CID) experiments. Electron-transfer reactions, presumably occurring during electrospray ionization but also in SORI-CID, can result in reduction of U(VI) to U(V) and perhaps even U(IV).  相似文献   

13.
One-dimensional La(9.33)(SiO(4))(6)O(2): Ln(3+) (Ln = Ce, Eu, Tb) microfibers were fabricated by a simple and cost-effective electrospinning method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL) and low voltage cathodoluminescence (CL) as well as kinetic decay were used to characterize the resulting samples. SEM and TEM results indicated that the diameter of the microfibers annealed at 1000 °C for 3 h was 200-245 nm. The microfibers were further composed of fine and closely linked nanoparticles. La(9.33)(SiO(4))(6)O(2): Ln(3+) (Ln = Ce, Eu, Tb) phosphors showed the characteristic emission of Ce(3+) (5d → 4f), Eu(3+) ((5)D(0)→(7)F(J)) and Tb(3+) ((5)D(3,4)→(7)F(J)) under ultraviolet excitation and low-voltage electron beams (3-5 kV) excitation. An energy transfer from Ce(3+) to Tb(3+) was observed in the La(9.33)(SiO(4))(6)O(2): Ce(3+), Tb(3+) phosphor under ultraviolet excitation and low-voltage electron beam excitation. Luminescence mechanisms were proposed to explain the observed phenomena. Blue, red and green emission can be realized in La(9.33)(SiO(4))(6)O(2): Ln(3+) (Ln = Ce, Eu, Tb) microfibers by changing the doping ions. So the La(9.33)(SiO(4))(6)O(2): Ln(3+) (Ln = Ce, Eu, Tb) phosphors have potential applications in full-color field emission displays.  相似文献   

14.
A series of uranyl and lanthanide (trivalent Ce, Nd) mellitates (mel) has been hydrothermally synthesized in aqueous solvent. Mixtures of these 4f and 5f elements also revealed the formation of a rare case of lanthanide-uranyl coordination polymers. Their structures, determined by XRD single-crystal analysis, exhibit three distinct architectures. The pure lanthanide mellitate Ln(2)(H(2)O)(6)(mel) possesses a 3D framework built up from the connection of isolated LnO(6)(H(2)O)(3) polyhedra (tricapped trigonal prism) through the mellitate ligand. The structure of the uranyl mellitate (UO(2))(3)(H(2)O)(6)(mel)·11.5H(2)O is lamellar and consists of 8-fold coordinated uranium atoms linked to each other through the organic ligand giving rise to the formation of a 2D 3(6) net. The third structural type, (UO(2))(2)Ln(OH)(H(2)O)(3)(mel)·2.5H(2)O, involves direct oxygen bondings between the lanthanide and uranyl centers, with the isolation of a heterometallic dinuclear motif. The 9-fold coordinated Ln cation, LnO(5)(OH)(H(2)O)(3), is linked to the 7-fold coordinated uranyl (UO(2))O(4)(OH) (pentagonal bipyramid) via one μ(2)-hydroxo group and one μ(2)-oxo group. The latter is shared between the uranyl bonding (U═O = 1.777(4)/1.779(6) ?) and a long Ln-O bonding (Ce-O = 2.822(4) ?; Nd-O = 2.792(6) ?). This unusual linkage is a unique illustration of the so-called cation-cation interaction associating 4f and 5f metals. The dinuclear motif is then further connected through the mellitate ligand, and this generates organic-inorganic layers that are linked to each other via discrete uranyl (UO(2))O(4) units (square bipyramid), which ensure the three-dimensional cohesion of the structure. The mixed U-Ln carboxylate is thermally decomposed from 260 to 280 °C and then transformed into the basic uranium oxide (U(3)O(8)) together with U-Ln oxide with the fluorite structural type ("(Ln,U)O(2)"). At 1400 °C, only fluorite type "(Ln,U)O(2)" is formed with the measured stoichiometry of U(0.63)Ce(0.37)O(2) and U(0.60)Nd(0.40)O(2-δ).  相似文献   

15.
Li X  Liu W  Guo Z  Tan M 《Inorganic chemistry》2003,42(26):8735-8738
Lanthanide nitrate complexes with the heptadentate ligand L (6-[2-(2-(diethylamino)-2-oxoethoxy)ethyl]-N,N,12-triethyl-11-oxo-3,9-dioxa-6,12-diazatetradecanamide), [Ln(2)L(NO(3))(6)] (Ln = La, Nd, Sm, Eu, Ho), have been prepared and characterized. The X-ray crystallographic studies show that, in [La(2)L(NO(3))(6)(H(2)O)].H(2)O (1), two complex cations [LaL(H(2)O)](3+) are linked by a hexanitrato anion [La(NO(3))(6)](3)(-) and form a trinuclear cation. In [Nd(2)L(NO(3))(6)(H(2)O)].CHCl(3).1/2CH(3)OH.1/2H(2)O (2), one complex cation [NdL(H(2)O)](3+) and a hexanitrato complex anion [Nd(NO(3))(6)](3)(-) are linked by a bridging NO(3)(-) to form a dinuclear complex. In both complexes, the bridging nitrate is an unusual tetradentate ligand. The metal ions are 12-coordinated in hexanitrato anions and 10-coordinated in complex cations. The chainlike supramolecular structures of La(3+) complex are parallel and have no hydrogen bonds in between, while, in the Nd(3+) complex, a chiral cavity is formed by hydrogen bonds between two adjacent supramolecular chains. These influences are further investigated by assessing the separation efficiency of L and (1)H NMR spectra of its lanthanide nitrate mixtures in solution.  相似文献   

16.
Using molecular dynamics simulations, we compare the solvation of uranyl and strontium nitrates and uranyl chlorides in two room-temperature ionic liquids (ILs): [BMI][PF(6)] based on 1-butyl-3-methylimidazolium(+),PF(6)(-) and [EMI][TCA] based on 1-ethyl-3-methylimidazolium(+),AlCl(4)(-). Both dissociated M(2+),2NO(3)(-) and associated M(NO(3))(2) states of the salts are considered for the two cations, as well as the UO(2)Cl(2) and UO(2)Cl(4)(2)(-) uranyl complexes. In a [BMI][PF(6)] solution, the "naked" UO(2)(2+) and Sr(2+) ions are surrounded by 5.8 and 10.1 F atoms, respectively. The first-shell PF(6)(-) anions rotate markedly during the dynamics and are coordinated, on the average, monodentate to UO(2)(2+) and bidentate to Sr(2+). In an [EMI][TCA] solution, UO(2)(2+) and Sr(2+) coordinate 5.0 and 7.4 Cl atoms of AlCl(4)(-), respectively, which display more restricted motions. Four Cl atoms sit on a least motion pathway of transfer to uranyl, to form the UO(2)Cl(4)(2)(-) complex. The free NO(3)(-) anions and the UO(2)Cl(4)(2)(-) complex are surrounded by imidazolium(+) cations ( approximately 4 and 6-9, respectively). The first shell of the M(NO(3))(2) and UO(2)Cl(2) neutral complexes is mostly completed by the anionic components of the IL, with different contributions depending on the solvent, the M(2+) cation, and its counterions. Insights into energy components of solvation are given for the different systems.  相似文献   

17.
Saad EM  Mansour RA  El-Asmy A  El-Shahawi MS 《Talanta》2008,76(5):1041-1046
The retention profile of uranium (VI) as uranyl ions (UO(2)(2+)) from the aqueous media onto the solid sorbent date pits has been investigated. The sorption of UO(2)(2+) ions onto the date pits was achieved quantitatively (98+/-3.4%, n=5) after 15 min of shaking at pH 6-7. The sorption of UO(2)(2+) onto the used sorbent was found fast, followed by a first order rate equation with an overall rate constant, k of 4.8+/-0.05 s(-1). The sorption data were explained in a manner consistent with a "solvent extraction" mechanism. The sorption data were also subjected to Freundlich isotherm model over a wide range of equilibrium concentration (1-20 microgmL(-1)) of UO(2)(2+). The results revealed that, a "dual-mode" of sorption mechanism involving absorption related to "solvent extraction" and an added component for "surface adsorption" is most likely operated simultaneously for uranyl ions uptaking the solid sorbent. The thermodynamic parameters (-DeltaH, DeltaS and DeltaG) of the uranyl ions uptake onto the date pits indicated that, the process is endothermic and proceeds spontaneously. The interference of some diverse ions on the sorption UO(2)(2+) from the aqueous media onto the date pits packed column was critically investigated and the data revealed quantitative collection of UO(2)(2+) at 5 mLmin(-1) flow rate. The retained UO(2)(2+) was recovered quantitatively with HCl (3.0 molL(-1)) from the column at 5 mLmin(-1) flow rate. The mode of binding of the date pits with UO(2)(2+) was determined from the IR spectral date bits before and after extraction of uranium (VI). The height equivalent (HETP) and the number (N) of theoretical plates of the date pits packed column were determined from the chromatograms. Complete retention and recovery of UO(2)(2+) spiked to wastewater samples by the date pits packed column was successfully achieved. The capacity of the used sorbent towards retention of uranium (VI) from aqueous solutions was much better than the most common sorbents.  相似文献   

18.
采用高温固相法合成了一系列的(Y0.95Ln0.01Ce0.04)3Al5O12(简称YAG∶Ce,Ln), 系统地研究了此体系中的Ln3+对Ce3+的发光强度的影响. 结果表明, 在YAG∶Ce的体系中, La3+, Gd3+, Lu3+等光学透明离子的少量掺杂对Ce3+的发光强度的影响不大; 掺入少量的Pr3+, Sm3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+等稀土离子, 由于它们的能级与Ce3+的能级有交叠, 使它们之间存在着竞争吸收或能量转移, 对Ce3+的发光有较明显的变化, 其中, Pr3+和Sm3+的掺入使其在红光区有发射峰, 可以增加YAG∶Ce的红色成分以提高显色性; Nd3+, Eu3+和Yb3+对Ce3+的发光有严重的猝灭作用.  相似文献   

19.
Wang R  Liu H  Carducci MD  Jin T  Zheng C  Zheng Z 《Inorganic chemistry》2001,40(12):2743-2750
Tetranuclear lanthanide-hydroxo complexes of the general formula [Ln(4)(mu(3)-OH)(4)(AA)(x)(H(2)O)(y)](8+) (1, Ln = Sm, AA = Gly, x = 5, y = 11; 2, Ln = Nd, AA = Ala, x = 6, y = 10; 3, Ln = Er, AA = Val, x = 5, y = 10) have been prepared by alpha-amino acid controlled hydrolysis of lanthanide ions under near physiological pH conditions (pH 6-7). The core component of these compounds is a cationic cluster [Ln(4)(mu(3)-OH)(4)](8+) whose constituent lanthanide ions and triply bridging hydroxo groups occupy the alternate vertexes of a distorted cube. The amino acid ligands coordinate the lanthanide ions via bridging carboxylate groups. Utilizing L-glutamic acid as the supporting ligand, a cationic cluster complex (4) formulated as [Er(4)(mu(3)-OH)(4)(Glu)(3)(H(2)O)(8)](5+) has been obtained. Its extended solid-state structure is composed of the cubane-like [Er(4)(mu(3)-OH)(4)](8+) cluster building units interlinked by the carboxylate groups of the glutamate ligands. All compounds are characterized by using a combination of spectroscopic techniques and microanalysis (CHN and metal). Infrared spectra of the complexes suggest the coordinated amino acids to be zwitterionic. The presence of mass (MALDI-TOF) envelopes corresponding to the [Ln(4)(mu(3)-OH)(4)](8+) (Ln = trivalent Sm, Nd, or Er) core containing fragments manifests the integrity of the cubane-like cluster unit. Magnetic studies using Evans' method suggest that exchange interactions between the lanthanide ions are insignificant at ambient temperature. The structural identities of all four compounds have been established crystallographically. The tetranuclear cluster core has been demonstrated to be a common structural motif in these complexes. A mechanism responsible for its self-assembly is postulated.  相似文献   

20.
The reaction between polyoxometalate (POM) [TBA](12)[WZn{Zn(H(2)O)}(2)(ZnW(9)O(34))(2)] (TBA = tetrabutyl ammonium) and lanthanide (Ln) nitrate (Ln = La, Eu and Tb) in a mixed solvent of CH(3)CN and DMF yielded three noncentrosymmetric diamondoid Ln-POM solid materials, {[Ln(2)(DMF)(8)(H(2)O)(6)][ZnW(12)O(40)]}·4DMF (Ln-POM; Ln = La, Eu and Tb). In these compounds, the {ZnW(12)O(40)} unit, transferred from the metastable [WZn{Zn(H(2)O)}(2)(ZnW(9)O(34))(2)] cluster, acts as a tetradentate ligand to connect with four Ln nodes, while the Ln ion links up two {ZnW(12)O(40)} units. These compounds generated interesting luminescence emissions that are dependent on the Ln ions and their ratios. White light emission was obtained by a doped approach with a rational ratio of the Eu(3+) and Tb(3+) ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号