首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the face of challenges in the development of excellent biocompatible materials for microfluidic device fabrication, we demonstrated that cross-linked cellulose (RCC) hydrogel can be used as the bulk material for microchips. The cellulose hydrogel was prepared from cellulose solution dissolved in an 8 wt% LiOH/15 wt% urea aqueous system with cooling by crosslinking with epichlorohydrin. Collagen as a key extracellular matrix component for promoting cell cultivation was cross-linked in the cellulose hydrogel to obtain cellulose–collagen (RCC/C) hybrid hydrogels. The experimental results revealed that cellulose-based hydrogel microchips with well-defined 2D or 3D microstructures possessed excellent structural replication ability, good mechanical properties, and cytocompatibility for cell culture as well as excellent dimensional stability at elevated temperature. The hydrogel, as a transparent microchip material, had no effect on the fluorescence behaviors of FITC-dextran and rhodamine-dextran, leading to the good conjunction with fluorescent detection and imaging. Moreover, collagen could be immobilized in the RCC/C hydrogel scaffold for promoting cell growth and generating stable chemical concentration gradients, leading to superior cytocompatibility. This work provides new hydrogel materials for the microfluidic technology field and mimicks a 3D cell culture microenvironment for cell-based tissue engineering and drug screening.  相似文献   

2.
The majority of tissues within human body are constituted of designated structures to enable specific functions. Much effort has been done to engineer artificial fabric cell-laden scaffolds which are widely used for a great diversity of linear tissue constructs. For this purpose, collagen microfibers are of great concern among diverse materials while the control of cell-laden fiber formation and orientated structure is still unsolvable. Here, we developed a novel microfluidic-based strategy for continuous fabrication and assembly of three-dimensional (3D) cell-laden oriented collagen hydrogel microfibers. Inspired by the flow-introduced shear force in a microfluidic chip, collagen hydrogel microfibers obtained the oriented fabric structure which could guide rat pheochromocytoma cells (PC12) oriented spreading and enhance relative cellular functional expression. Rat aortic endothelial cells (RAOECs) were introduced to construct a co-cultured microfiber model, which further facilitated the functional expression of neural cells due to the synergistic effect of both vascularized-like cells and neural-like cells. Moreover, the ability of assembling collagen microfibers into larger constructs will benefit a variety of applications in tissue engineering and biomedical research.  相似文献   

3.
The present work investigates Ca2+‐crosslinked nanofibrillated cellulose hydrogels as potential hemostatic wound dressings by studying core interactions between the materials and a central component of wounds and wound healing—the blood. Hydrogels of wood‐derived anionic nanofibrillated cellulose (NFC) and NFC hydrogels that incorporate kaolin or collagen are studied in an in vitro whole blood model and with platelet‐free plasma assays. The evaluation of thrombin and factor XIIa formation, platelet reduction, and the release of activated complement system proteins, shows that the NFC hydrogel efficiently triggered blood coagulation, with a rapid onset of clot formation, while displaying basal complement system activation. By using the NFC hydrogel as a carrier of kaolin, the onset of hemostasis is further boosted, while the NFC hydrogel containing collagen exhibits blood activating properties comparable to the anionic NFC hydrogel. The herein studied NFC hydrogels demonstrate great potential for being part of advanced wound healing dressings that can be tuned to target certain wounds (e.g., strongly hemorrhaging ones) or specific phases of the wound healing process for optimal wound management.  相似文献   

4.
Natural polymers such as collagen are popular materials for tissue engineering scaffolds due to their innate bioactivity and biocompatibility. Being derived from animal sources, however, means that batch-to-batch consistency is often low and the extraction of collagen is costly. This conundrum facilitates the need for synthetic alternatives as scaffolding materials. In this study, a system of poly(ethylene glycol) (PEG)-based thiol-ene coupled (TEC) hydrogel scaffolds is presented for tissue engineering purposes. The platform includes several necessary features, namely cytocompatibility, high swelling ability, biodegradability, tunable stiffness, and fast, straightforward fabrication. The swelling ability is provided by the hydrophilicity of the ether-links of PEG, which facilitated the formation of high water content hydrogels that match the water content of soft tissues for the proper diffusion of nutrients and waste compounds. TEC ensures fast and facile fabrication, with cross-linking moieties that allow for the biodegradation of the hydrogel network through hydrolytic cleavage. The mechanical properties of the scaffolds are made tunable in the range of storage moduli spanning <1 kPa to >100 kPa. It is also shown that despite the synthetic nature of the hydrogels, human dermal fibroblasts and murine macrophages, Raw 264.7, were able to survive and produce extracellular protein excretions while embedded in the 3D hydrogels.  相似文献   

5.
The study presents the preparation of a semi-synthetic hydrogel based on poly(N-isopropyl acrylamide-co-diethylene glycol diacrylate) inserted onto the collagen porous membrane. The synthesis of the hydrogels was performed through radical copolymerization of N-isopropyl acrylamide (NIPAM) with diethylene glycol diacrylate (DEGDA) also as crosslinking agent, using ammonium persulfate as initiator and N,N,N',N'-tetramethylethylene diamine as activator, and it was achieved in the presence of the collagen matrix. The prepared hydrogels were characterized by Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy. The swelling behaviour of the semi-interpenetrated polymer network related on the hydrogel composition, it was also evaluated. The pore sizes of the synthesized hydrogels, much larger than the typical mesh size of a conventional hydrogel, allow to consider the hybrid hydrogel based on the inserted poly(NIPAM-co-DEGDA) onto collagen fibrils as a super-porous hydrogel.  相似文献   

6.
There is a clear need for novel in vitro models, especially for neuronal applications. Development of in vitro models is a multiparameter task consisting of cell‐, biomaterial‐, and environment‐related parameters. Here, three different human origin neuronal cell sources are studied and cultured in various hydrogel 3D scaffolds. For the efficient evaluation of complex results, an indexing method for data is developed and used in principal component analysis (PCA). It is found that no single hydrogel is superior to other hydrogels, and collagen I (Col1) and hyaluronan–poly(vinyl alcohol) (HA1‐PVA) gels are combined into an interpenetrating network (IPN) hydrogel. The IPN gel combines cell supportiveness of the collagen gel and stability of the HA1‐PVA gel. Moreover, cell adhesion is studied in particular and it is found that adhesion of neurons differs from that observed for fibroblasts. In conclusion, the HA1‐PVA‐col1 hydrogel is a suitable scaffold for neuronal cells and supports adhesion formation in 3D.  相似文献   

7.
Hydrogel with a 3D network structure can cover the wound to stop the bleeding and support the host tissue infiltration and integration. In this study, an antibacterial hydrogel with hemostasis and the ability to promote wound healing is proposed. This hydrogel comprised surfactin, polyvinylpyrrolidone, and methacrylic anhydride (MA) grafted quaternary ammonium chitosan (CS-MA). The hydrogel formation is triggered by the ultraviolet-initiated polymerization of CS-MA, while the surfactin is complexed with the hydrogel through hydrogen bonding interaction. The results showed that this hydrogel is an adhesive hydrogel with shape adaptability, which can cover the wound surface and promote contact between the hydrogel and the wound surface. More importantly, this hydrogel can simulate the microenvironment of the primary extracellular matrix and increase collagen deposition, and inflammatory factor transformation. The designing of such a multi-functional hydrogel is expected to provide a novel approach to promoting the healing of wounds.  相似文献   

8.
The controlled integration of organic and inorganic components confers natural bone with superior mechanical properties. Bone biogenesis is thought to occur by templated mineralization of hard apatite crystals by an elastic protein scaffold, a process we sought to emulate with synthetic biomimetic hydrogel polymers. Cross-linked polymethacrylamide and polymethacrylate hydrogels were functionalized with mineral-binding ligands and used to template the formation of hydroxyapatite. Strong adhesion between the organic and inorganic materials was achieved for hydrogels functionalized with either carboxylate or hydroxy ligands. The mineral-nucleating potential of hydroxyl groups identified here broadens the design parameters for synthetic bonelike composites and suggests a potential role for hydroxylated collagen proteins in bone mineralization.  相似文献   

9.
Injectable filling material is a simple and efficient method for soft tissues reconstruction and is extremely popular in not only plastic surgery but also cosmetic industry. However, there is a lack of soft tissue fillers with perfect performance on the market currently. Here, we constructed a new microsphere/hydrogel composite and evaluated its potential as a candidate for soft tissue augmentation. mPEG-PDLLA microspheres were prepared by utilizing a SPG membrane emulsifier which endowed micros...  相似文献   

10.
Physically crosslinked polyvinyl alcohol/collagen composite hydrogels were prepared by a cyclic freezing-drying technique. The biological properties of the hydrogels, including hemolysis, anaphylaxis, pyrogen and acute systemic toxicity tests and implantation in-vivo, were investigated. The hemolysis test suggested that the polyvinyl alcohol/collagen, with a hemolysis index of 1.19%, did not have an obvious hemolysis reaction. There was no toxicosis or death cases observed in the acute systemic toxicity test, and the hydrogel showed no anaphylaxis or pyrogen response. The composite hydrogel showed a good histological compatibility in the in-vivo study. The results indicated that the polyvinyl alcohol/collagen composite hydrogels have promising applications for pharmaceutical and biomedical fields.  相似文献   

11.
Hydrogels are water-retainable materials, made from cross-linked polymers, that can be tailored to applications in bioanalysis and biomedicine. As technology advances, an increasing number of molecules have been used as the components of hydrogel systems. However, the shortcomings of these systems have prompted researchers to find new materials that can be incorporated into them. Among all of these emerging materials, aptamers have recently attracted substantial attention because of their unique properties, for example biocompatibility, selective binding, and molecular recognition, all of which make them promising candidates for target-responsive hydrogel engineering. In this work, we will review how aptamers have been incorporated into hydrogel systems to enable colorimetric detection, controlled drug release, and targeted cancer therapy.  相似文献   

12.
作为一种新型的功能材料,导电水凝胶已经引起广泛的关注。本文根据目前的研究现状,将导电水凝胶大致分为聚电解质导电水凝胶,酸掺杂导电水凝胶,无机物添加导电水凝胶以及导电高分子基导电水凝胶等几大类,并综述了它们的制备方法。另外,由于大分子体系的导电高分子和水凝胶都有着独特和重要的性能,这使得它们具有广阔的应用价值。所以,本文在综述导电水凝胶制备进展的同时着重综述了导电高分子基导电水凝胶的制备进展。  相似文献   

13.
A fabrication strategy for biphasic gels is reported, which incorporates high‐internal‐phase emulsions. Closely packed micro‐inclusions within the elastic hydrogel matrix greatly improve the mechanical properties of the materials. The materials exhibit excellent switchable mechanics and shape‐memory performance because of the switchable micro‐ inclusions that are incorporated into the hydrogel matrix. The produced materials demonstrated a self‐healing capacity that originates from the noncovalent effect of the biphasic heteronetwork. The aforementioned characteristics suggest that the biphasic gels may serve as ideal composite gel materials with validity in a variety of applications, such as soft actuators, flexible devices, and biological materials.  相似文献   

14.
Given increasing environmental issues due to the large usage of non‐biodegradable plastics based on petroleum, new plastic materials, which are economic, environmentally friendly, and recyclable are in high demand. One feasible strategy is the bio‐inspired synthesis of mineral‐based hybrid materials. Herein we report a facile route for an amorphous CaCO3 (ACC)‐based hydrogel consisting of very small ACC nanoparticles physically cross‐linked by poly(acrylic acid). The hydrogel is shapeable, stretchable, and self‐healable. Upon drying, the hydrogel forms free‐standing, rigid, and transparent objects with remarkable mechanical performance. By swelling in water, the material can completely recover the initial hydrogel state. As a matrix, thermochromism can also be easily introduced. The present hybrid hydrogel may represent a new class of plastic materials, the “mineral plastics”.  相似文献   

15.
Gelatin, the low molecular weight collagen derivative from porcine skin was transformed into a stable permanent hydrogel by γ-radiation. A series of samples with 3% gelatin solution in water were irradiated at doses of 12, 25, 50, 100, 150, 200 kGy at room temperature in the absence of air with a dose rate of 2.2 kGy/h. At low dose gelatin hydrogels incorporating all the available water were obtained. At higher doses above 50 kGy, the gelatin hydrogel samples show a curious shrinking phenomenon due to the relatively high crosslinking density level achieved, so part of the available water is squeezed out from the gel cage. The gelatin hydrogel samples were studied by mass fractionation analysis, by spectrophotometric and polarimetric analysis. Further characterization was made by FT-IR spectroscopy and by thermal analysis (DSC, DTA and TGA) of the dried gelatin samples after irradiation in comparison to a reference untreated sample.  相似文献   

16.
In the present research, chitosan/collagen and chitosan/collagen/nano-hydroxyapatite (nHAP) hydrogel nanocomposites were prepared using naturally extracted chitosan from Persian Gulf shrimp wastes and rat tail-tendon collagen. Freeze-gelation method was used to prepare highly porous scaffolds. The morphology, chemical structure, water retainability, and thermal properties were characterized using SEM, FTIR, water content experiment, simultaneous thermal analysis (STA), respectively. Atomic force microscopy (AFM) nanoindentation and unconfined compression test were used to assess different feature of the mechanical properties of the hydrogels. The obtained results were so promising that the prepared nanocomposites can be considered as a potential candidate for cartilage tissue engineering.  相似文献   

17.
邓新旺  胡惠媛  罗仲宽  吴茂盛  周莉 《应用化学》2015,32(12):1358-1363
通过循环冷冻-解冻法,制成了肝素钠/聚乙烯醇(HS/PVA)复合水凝胶材料。 探讨了不同质量分数肝素钠对复合水凝胶材料的可见光透过率、含水率、亲水性、力学性能以及肝素钠释放量的影响。 结果表明,复合水凝胶的可见光透过率为92%以上,溶胀平衡的含水率为72%~78%,亲水性较纯PVA水凝胶有所提升,拉伸强度和断裂伸长率都稍有下降。 细胞粘附实验结果表明,适量的肝素钠的释放可以达到减少细胞粘附的效果。 这种HS/PVA复合水凝胶材料有望用作人工角膜中心区材料。  相似文献   

18.
A chitosan-based biocompatible self-healing hydrogel has been facilely prepared and used for bioapplications.  相似文献   

19.
20.
《中国化学快报》2021,32(11):3636-3640
Zwitterionic polymer materials have been extensively studied, but zwitterionic peptides supramolecular hydrogel materials are rarely studied. In this study, the preparation of two zwitterionic hydrogels using self-assembled peptides were reported. The hydrogels could be fabricated easily by changing the temperature or enzyme catalysis in a short time. And the differences in structure and function of the zwitterion peptide hydrogels caused by the two preparation methods were also be compared. We found that the hydrogel prepared by enzyme induced self-assembly has better solubility and lower cytotoxicity than that prepared by the heating-cooling process. The result showed the enzyme induced self-assembly way to form zwitterionic peptides supramolecular hydrogel materials could have further biomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号