首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of a dirhamnolipid biosurfactant secreted by Pseudomonas aeruginosa with bovine serum albumin was studied by means of various physical techniques. Binding of the biosurfactant to bovine serum albumin was first characterized by isothermal titration calorimetry, showing that one or two molecules of dirhamnolipid, in the monomer state, bound to one molecule of the protein with high affinity. These results were confirmed by surface tension measurements in the absence and presence of bovine serum albumin. As seen by differential scanning calorimetry, dirhamnolipid shifted the temperature of the thermal unfolding of bovine serum albumin toward higher values, thus increasing the stability of the protein on heating. The impact of dirhamnolipid on the structure of the native protein was low, since most of the secondary structure remained unaffected upon interaction with the biosurfactant, as shown by FTIR spectroscopy. However, 2D correlation infrared spectroscopy indicated that the sequence of temperature-induced structural changes in native bovine serum albumin was modified by the presence of the biosurfactant. The consequences of these results in relation to possible applications of these dirhamnolipid biosurfactants for protein studies are discussed.  相似文献   

2.
The reversibility of the adsorption-desorption cycle was established by comparing the thermostability (determined by differential scanning calorimetry) and secondary structure (obtained by circular dichroism spectroscopy) of BSA before adsorption, adsorbed on, and exchanged from silica particles. Circular dichroism was also measured as a function of temperature at a given wavelength. Adsorbed BSA presents a higher thermostability and a lower alpha-helix content than the native protein while it regains its conformation when released from the surface back into the solution; the homomolecular exchange is reversible.The changes in ellipticity (at a given wavelength) as a function of the temperature show that the thermal denaturation of native, adsorbed, and exchanged BSA proceeds in two steps. For the dissolved protein, the first step up to 50 degrees C involves a slight change in the structure while in the 50-90 degrees C temperature range the actual unfolding takes place. For the adsorbed BSA, the first step proceeds up to 60 degrees C and includes some intermolecular association between the adsorbed protein molecules, which may be responsible for the increased thermostability. The unfolding occurs in the 60-90 degrees C range; it is less cooperative and involves a lower enthalpy change than the native protein. Adsorbed BSA presents the same secondary structure as that observed for dissolved BSA that has passed a heating-cooling cycle. Copyright 2001 Academic Press.  相似文献   

3.
Nanoparticles exposed to biofluids become coated with proteins, thus making protein-nanoparticle interactions of particular interest. The consequence on protein conformation and activity depends upon the extent of protein adsorption on the nanoparticle surface. We report the interaction of bovine serum albumin (BSA) with gold nanostructures, particularly gold nanoparticles (GNP) and gold nanorods (GNR). The difference in the geometry and surface properties of nanoparticles is manifested during complexation in terms of different binding modes, structural changes, thermodynamic parameters, and the activity of proteins. BSA is found to retain native-like structure and properties upon enthalpy-driven BSA-GNP complexation. On the contrary, the entropically favored BSA-GNR complexation leads to substantial loss in protein secondary and tertiary structures with the release of a large amount of bound water, as indicated by isothermal calorimetry (ITC), circular dichroism (CD), and Fourier transform infrared (FTIR) and fluorescence spectroscopies. The esterase activity assay demonstrated a greater loss in BSA activity after complexation with GNR, whereas the original activity is retained in the presence of GNP. The formation of large assemblies (aggregates) and reduced average lifetime, as evidenced from dynamic light scattering and fluorescence decay measurements, respectively, suggest that GNR induces protein unfolding at its surface. The effect of temperature on the CD spectra of BSA-GNP was found to be similar to that of pristine BSA, whereas BSA-GNR shows distortion in CD spectra at lower wavelengths, strengthening the perception of protein unfolding. High binding constant and entropy change for BSA-GNR complexation determined by ITC are consistent with large surfacial interaction that may lead to protein unfolding. The present work highlights the differential response of a protein depending on the nature of the nanostructure and its surface chemistry, which need to be modulated for controlling the biological responses of nanostructures for their potential biomedical applications.  相似文献   

4.
Raman spectroscopy (in the low-frequency range and the amide I band region) and modulated differential scanning calorimetry investigations have been used to analyze temperature-induced structural changes in lysozyme dissolved in 1H2O and 2H2O in the thermal denaturation process. Low-frequency Raman data reveal a change in tertiary structure without concomitant unfolding of the secondary structure. Calorimetric data show that this structural change is responsible for the configurational entropy change associated with the strong-to-fragile liquid transition and correspond to about 1/3 of the native-denaturated transition enthalpy. This is the first stage of the thermal denaturation which is a precursor of the secondary structure change and is determined to be strongly dependent on the stability of the hydrogen-bond network in water. Low-frequency Raman spectroscopy provides information on the flexibility of the tertiary structure (in the native state and the transient folding state) in relation to the fragility of the mixture. The unfolding of the secondary structure appears as a consequence of the change in the tertiary structure and independent of the solvent. Protein conformational stability is directly dependent on the stability of the native tertiary structure. The structural transformation of tertiary structure can be detected through the enhanced 1H/2H exchange inhibited in native proteins. Taking into account similar features reported in the literature observed for different proteins it can be considered that the two-stage transformation observed in lysozyme dissolved in water is a general mechanism for the thermal denaturation of proteins.  相似文献   

5.
In biological fluids, nanoparticles are always surrounded by proteins. As the protein is adsorbed on the surface, the extent of adsorption and the effect on the protein conformation and stability are dependent on the chemical nature, shape, and size of the nanoparticle (NP). We have carried out a detailed investigation on the interaction of bovine serum albumin (BSA) with polyethyleneimine-functionalized ZnO nanoparticles (ZnO-PEI). ZnO-PEI was synthesized using a wet chemical method with a core size of ~3-7 nm (from transmission electron microscopy). The interaction of BSA with ZnO-PEI was examined using a combination of calorimetric, spectroscopic, and computational techniques. The binding was studied by ITC (isothermal titration calorimetry), and the result revealed that the complexation is enthalpy-driven, indicating the possible involvement of electrostatic interaction. To investigate the nature of the interaction and the location of the binding site, a detailed domain-wise surface electrostatic potential calculation was performed using adaptive Poisson-Boltzmann software (APBS). The result shows that the protein surface can bind the nanoparticle. On binding ZnO-PEI, the protein gets destabilized to some extent, as displayed by CD (circular dichroism) and FTIR (Fourier transform infrared) spectroscopy. Chemical and thermal denaturation of BSA, when carried out in the presence of ZnO-PEI, also indicated a small perturbation in the protein structure. A comparison of the enthalpy and entropy components of binding with those derived for the interaction of BSA with ZnO nanoparticles explains the effect of hydrophilic cationic species attached on the NP surface. The effect of the NP surface modification on the structure and stability of BSA would find useful applications in nanobiotechnology.  相似文献   

6.
The role played by the metal ion in thermodynamics of azurin folding was addressed by studying the thermal denaturation of the apo-form by differential scanning calorimetry (DSC), and by comparing the results with data concerning the holo protein. The thermal unfolding experiments showed that at 25°C the presence of metal ion increases the thermodynamic stability of azurin by 24 kJ mol−1. A comparison between the unfolding and the copper binding free energies allow us to assert that the unfolded polypeptide chain binds copper and subsequently folds into native holo azurin, being this the thermodynamically most favourable process in driving azurin folding.  相似文献   

7.
A coarse-grained Monte Carlo simulation is used to study thermal denaturation of small proteins in an infinitely dilute solution and adsorbed on a flat hydrophobic surface. Intermolecular interactions are modeled using the Miyazawa-Jernigan (MJ) knowledge-based potential for implicit solvent with the BULDG hydrophobicity scale. We analyze the thermal behavior of lysozyme for its prevalence of α-helices, fibronectin for its prevalence of β-sheets, and a short single helical peptide. Protein dimensions and contact maps are studied in detail before and during isothermal adsorption and heating. The MJ potential is shown to correctly predict the native conformation in solution under standard conditions, and the anticipated thermal stabilization of adsorbed proteins is observed when compared with heating in solution. The helix of the peptide is found to be much less stable thermally than the helices of lysozyme, reinforcing the importance of long-range forces in defining the protein structure. Contact map analysis of the adsorbed proteins shows correlation between the hydrophobicity of the secondary structure and their thermal stability on the surface.  相似文献   

8.
The effect of low molecular weight surfactants on the thermal stability of immunoglobulin G is studied by differential scanning calorimetry. The corresponding change in the secondary structure is investigated using circular dichroism spectroscopy and the rate of aggregate formation, both in the presence and absence of surfactant, is monitored by dynamic light scattering. At low surfactant concentrations (SDS/Tween 20 mixture) the thermal stability of the protein was not affected. With increasing surfactant concentration the protein structure is perturbed, most probably due to hydrophobic interaction with the surfactant, leading to a lower thermal stability. At even higher concentrations the surfactant molecules encapsulate the protein molecules, so that the unfolded state is strongly suppressed due to restricted conformational freedom in a confined volume. Interaction with the surfactant mixture at intermediate concentration influences the secondary structure of IgG strongly, i.e. α-helix and random coil conformations are promoted and the amounts of β-sheets and β-turns are reduced.  相似文献   

9.
Sugar-induced thermostabilization of lysozyme was analyzed by Raman scattering and modulated differential scanning calorimetry investigations, for three disaccharides (maltose, sucrose, and trehalose) characterized by the same chemical formula (C(12)H(22)O(11)). This study shows that trehalose is the most effective in stabilizing the folded secondary structure of the protein. The influence of sugars on the mechanism of thermal denaturation was carefully investigated by Raman scattering experiments carried out both in the low-frequency range and in the amide I band region. It was determined that the thermal stability of the hydrogen-bond network of water, highly dependent on the presence of sugars, contributes to the stabilization of the native tertiary structure and inhibits the first stage of denaturation, that is, the transformation of the tertiary structure into a highly flexible state with intact secondary structure. It was found that trehalose exhibits exceptional capabilities to distort the tetra-bonded hydrogen-bond network of water and to strengthen intermolecular O-H interactions responsible for the stability of the tertiary structure. Trehalose was also observed to be the best stabilizer of the folded secondary structure, in the transient tertiary structure, leading to a high-temperature shift of the unfolding process (the second stage of denaturation). This was interpreted from the consideration that the transient tertiary structure is less flexible and inhibits the solvent accessibility around the hydrophobic groups of lysozyme.  相似文献   

10.
Measurements of the surface dilational elasticity close to equilibrium did not indicate significant distinctions in the surface conformation of different forms of bovine serum albumin (BSA) in a broad pH range. At the same time, the protein denaturation in the surface layer under the influence of guanidine hydrochloride led to strong changes in the kinetic dependencies of the dynamic surface elasticity if the denaturant concentration exceeded a critical value. It was shown that the BSA unfolding at the solution surface occurred at lower denaturant concentrations than in the bulk phase. In the former case, the unfolding resulted in the formation of loops and tails at surface pressures above 12 mN/m. The maximal values of the dynamic surface elasticity almost coincided with the corresponding data for the recently investigated solutions of β-lactoglobulin, thereby indicating a similar unfolding mechanism.  相似文献   

11.
The thermal stability of the bovine whey proteins.; β-lactoglobulin (β-1g), α-lactalbumin (α-1a) and serum albumin (BSA) was studied individually and in mixtures in the temperature range 25–140°C by differential scanning calorimetry. The thermal denaturation temperature (TD) and the transition enthalpies (ΔHapp) were determined at different pH-values (3.0–10.0) in simulated milk ultrafil-trate (SMUF).β-Lg was, except at pH 9.0 and 10.0, the most thermostable protein at all pH-values. At acidic pH-values BSA was the least thermostable. At alkaline pH-values, however, α-la had lower thermal stability than BSA. α-La exhibited double peak behaviour at acidic pH-values and ΔHapp was dependent on Ca-content. Mixtures of the proteins were studied at pH 4.0, 5.0 and 6.6. In general, when mixed, the proteins seemed to denaturate independently of each other.  相似文献   

12.
应用荧光光谱技术,对盐酸胍与牛血清蛋白在30℃水溶液中的结合作用及造成牛血清蛋白变性的过程进行了研究,考察了盐酸胍诱导牛血清蛋白变性时荧光强度和峰位的变化规律,并计算出伸展分数fu,变性平衡常数Ku,伸展吉布斯自由能△Gu,衡量蛋白质对变性剂稳定性的参量△GH2o,衡量蛋白质变性协同性的参量m和变性中点C1/2.研究结...  相似文献   

13.
典型的辣根过氧化物酶同功酶 C(HRP)是用于过氧化物酶生物化学研究的原型酶 .HRP的血红素辅基的铁是五配位的 ,血红素口袋的远端和近端位点都存在一个氢键网络 .HRP结构的稳定性已用随温度变化的 FTIR光谱法 [1]和圆二色及荧光光谱法 [2 ]进行了研究 ,并与细胞色素 c过氧化物酶进行了比较 . HRP的氰根加合物的活性位点的动力学稳定性和分子结构也用二维核磁共振法进行了表征[3] .但是关于氰根配体对 HRP在热伸展过程中的结构影响尚未见到报道 .本文用傅里叶变换红外光谱(FTIR)和圆二色 (CD)光谱法详细研究了氰根配位的 HRP随温…  相似文献   

14.
The interaction of a flavonoid molecule (puerarin) with bovine serum albumin (BSA) was characterized by isothermal titration calorimetry (ITC), optical spectroscopic technique, and molecular modeling method under physiological conditions. The binding parameters for the reaction were calculated according to ITC experiments at different temperatures. The thermodynamic parameters, negative enthalpy changes (ΔH), and positive entropy (ΔS) indicated that the binding processes were entropically driven. The alterations of protein secondary structure in the presence of puerarin in aqueous solution were estimated by the evidences from FT-IR and CD spectroscopy with reductions of α-helices. On the basis of fluorescence resonance energy transfer (FRET) between excited tryptophan in BSA and BSA bound puerarin, the critical transfer distance and mean distance between tryptophan in BSA and puerarin were estimated.  相似文献   

15.
Human serum albumin unfolding in ethanol/water mixtures was studied by use of differential scanning calorimetry. Ethanol-induced changes in DSC curves of defatted and non-defatted albumin were markedly different. In the presence of ethanol, bimodal denaturation transition for fatty acid free albumin was observed while that for albumin containing endogenous fatty acids was single and more sharpen than in aqueous solution. Ethanol was found to decrease the thermal stability of albumin due to the binding to the unfolded state to a higher degree than to the native state, thus favouring unfolding. The binding with different affinities has been suggested depending on ethanol concentration range.  相似文献   

16.
Summary The effect of pH on the thermal denaturation of BSA containing fatty acids was studied by use of differential scanning calorimetry (DSC). Thermal scanning of BSA aqueous solutions gave various types of DSC curves depending on the protein concentration and on the pH. The broad bimodal endothermic transition was suggested to be connected with loose protein structure in contradistinction to single peak for compact molecule structure. The propensity toward precipitation at pH conditions ranging from 3.8 to 5 was observed. A scan-rate independent and partly reversible behavior of the thermal heating of BSA was found. Deconvolution of DSC traces in non-two-state model with assumption of two- or three-component transition allowed to study the effect of pH on different parts of BSA molecule.  相似文献   

17.
The interaction between β-lactoglobulin (BLG) and a newly synthesized Cu(II) complex (2,2′-dibipyridin Cu(II) chloride) was investigated by fluorescence spectroscopy, circular dichroism (CD) and isothermal titration calorimetry (ITC) at temperatures of 27 and 37 °C. The measured heat values of the BLG–Cu(II) complex interaction are reported and analyzed in terms of our previous extended solvation theory for calculating the binding and thermodynamic parameters for the interaction. The Cu(II) complex has a strong ability to quench the intrinsic fluorescence of BLG, to change the microenvironment of tryptophan residues, and to alter the tertiary structure of the protein. Far UV–CD results showed that the complex does not induce any significant changes in the secondary structure of BLG. However, binding of the Cu(II) complex to BLG leads to a significant change in the tertiary structure of BLG, increasing its hydrophobicity and inducing a partial unfolding. This agrees well with ITC data suggesting destabilization of the protein. This finding opens up a way to predict protein destabilization caused by ligand binding, using the extended solvation theory previously proposed.  相似文献   

18.
作为从分子水平上阐明生命奥秘的中心课题之一,蛋白质的折叠问题一直受到生物化学、生物物理学和结构生物学等领域研究工作者的高度关注。在蛋白质的变性过程中,它们往往达不到完全去折叠,而是会形成不同的部分折叠中间态[1-3],这些部分折叠中间态在蛋白质折叠过程中起着重要作  相似文献   

19.
The rotational diffusion of bovine serum albumin (BSA) molecules in solutions with different concentrations of the anionic detergent sodium dodecylsulfate (SDS) at different pH values is investigated, yielding information on the denaturation of BSA under the action of SDS. It is found from the increased degree of polarization in the tryptophan fluorescence of BSA and the registered parameters for the rotational diffusion of BSA molecules that the denaturation of BSA under the action of SDS at pH values less than the isoelectric point (pI) of BSA (4–9) is a two-stage process. It is shown that the first stage of BSA denaturation common for all pH values is the decondensation of BSA globules, while the second stage of BSA denaturation at pH greater than the pI of BSA is the unfolding of the protein’s amino acid chain. It is concluded that the denaturation of BSA under the action of SDS proceeds more deeply at pH values greater than the pI of BSA.  相似文献   

20.
Calorimetry has been employed to investigate the quantitative energetic aspects and mechanism underlying protein–tetraethylammonium bromide (TEAB) interactions. Differential scanning calorimetry and UV–Visible spectroscopy have been used to study the thermal unfolding of three proteins of different structure and function (bovine serum albumin, α-lactalbumin, and bovine pancreatic ribonuclease A). The mode of interaction has been studied by using isothermal titration calorimetry, which demonstrates the absence of appreciable specific binding of TEAB to the protein. This suggests the involvement of solvent mediated effects and, possibly weak non-specific binding. The thermal unfolding transitions were found to be calorimetrically reversible for α-lactalbumin and bovine pancreatic ribonuclease A and partially reversible in the case of bovine serum albumin. The results indicate protein destabilization promoted by the TEAB interaction. The preferential interaction parameters of TEAB with α-lactalbumin and ribonuclease A confirm that an increased interaction of the hydrophobic groups of the TEAB with that of the protein upon denaturation is responsible for the reduced thermal stability of the protein. The decrease in the thermal stability of proteins in the presence of TEAB is well supported by a red shift in the intrinsic fluorescence of these proteins leading to conformational change thereby shifting the native ? denatured equilibrium towards right. The forces responsible for the thermal denaturation of the proteins of different structure and function in the presence of TEAB are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号