首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CDK2 and CDK4 known promoter of cell cycling catalyze phosphorylation of RB protein. Enzyme specificity between two CDKs that work at a different cell cycle phase is not clearly understood. In order to define kinase properties of CDK2 and CDK4 in complex with cycline A or cycline D1 in relation to their respective role in cell cycling regulation, we examined enzymatic properties of both CDK4/cycline D1 and CDK2/cycline A in vitro. Association constant, Km for ATP in CDK4/cyclin D1 was found as 418 microM, a value unusually high whereas CDK2/cyclin A was 23 microM, a value close to most of other regulatory protein kinases. Turnover value for both CDK4/cyclin D1 and CDK2/cyclin A were estimated as 3.4 and 3.9 min(-1) respectively. Kinetic efficiency estimation indicates far over one order magnitude less efficiency for CDK4/cyclin D1 than the value of CDK2/cycline A (9.3 pM(-1) min(-1) and 170 pM(-1) min(-1) respectively). In addition, inhibition of cellular CDK4 caused increase of cellular levels of ATP, even though inhibition of CDK2 did not change it noticeably. These data suggest cellular CDK4/cyclin D1 activity is tightly associated with cellular ATP concentration. Also, analysis of phosphorylated serine/threonine sites on RB catalyzed by CDK4/cyclin D1 and CDK2/cyclin A showed significant differences in their preference of phosphorylation sites in RB C-terminal domain. Since RB is known to regulate various cellular proteins by binding and this binding is controlled by its phosphorylation, these data shown here clearly indicate significant difference in their biochemical properties between CDK4/cyclin D1 and CDK2/cyclin A affecting regulation of cellular RB function.  相似文献   

2.
Summary Cyclin-dependent kinases (CDKs) play a key role in regulating the cell cycle. The cyclins, their activating agents, and endogenous CDK inhibitors are frequently mutated in human cancers, making CDKs interesting targets for cancer chemotherapy. Our aim is the discovery of selective CDK4/cyclin D1 inhibitors. An ATP-competitive pyrazolopyrimidinone CDK inhibitor was identified by HTS and docked into a CDK4 homology model. The resulting binding model was consistent with available SAR and was validated by a subsequent CDK2/inhibitor crystal structure. An iterative cycle of chemistry and modeling led to a 70-fold improvement in potency. Small substituent changes resulted in large CDK4/CDK2 selectivity changes. The modeling revealed that selectivity is largely due to hydrogen-bonded interactions with only two kinase residues. This demonstrates that small differences between enzymes can efficiently be exploited in the design of selective inhibitors.  相似文献   

3.
A number of selective inhibitors of the CDK4/cyclin D1 complex have been reported recently. Due to the absence of an experimental CDK4 structure, the ligand and protein determinants contributing to CDK4 selectivity are poorly understood at present. Here, we report the use of computational methods to elucidate the characteristics of selectivity and to derive the structural basis for specific, high-affinity binding of inhibitors to the CDK4 active site. From these data, the hypothesis emerged that appropriate incorporation of an ionizable function into a CDK2 inhibitor results in more favorable binding to CDK4. This knowledge was applied to the design of compounds in the otherwise CDK2-selective 2-anilino-4-(thiazol-5-yl)pyrimidine pharmacophore that are potent and highly selective ATP antagonists of CDK4/cyclin D1. The findings of this study also have significant implications in the design of CDK4 mimic structures based on CDK2.  相似文献   

4.
The cyclin-dependent kinases (CDKs) have been characterized in complex with a variety of inhibitors, but the majority of structures solved are in the inactive form. We have solved the structures of six inhibitors in both the monomeric CDK2 and binary CDK2/cyclinA complexes and demonstrate that significant differences in ligand binding occur depending on the activation state. The binding mode of two ligands in particular varies substantially in active and inactive CDK2. Furthermore, energetic analysis of CDK2/cyclin/inhibitors demonstrates that a good correlation exists between the in vitro potency and the calculated energies of interaction, but no such relationship exists for CDK2/inhibitor structures. These results confirm that monomeric CDK2 ligand complexes do not fully reflect active conformations, revealing significant implications for inhibitor design while also suggesting that the monomeric CDK2 conformation can be selectively inhibited.  相似文献   

5.
In cell development, the cell cycle is crucial, and the cycle progression’s main controllers are endogenous CDK inhibitors, cyclin-dependent kinases (CDKs), and cyclins. In response to the mitogenic signal, cyclin D is produced and retinoblastoma protein (Rb) is phosphorylated due to activated CDK4/CDK6. This causes various proteins required in the cell cycle progression to be generated. In addition, complexes of CDK1-cyclin A/B, CDK2-cyclin E/A, and CDK4/CDK6-cyclin D are required in each phase of this progression. Cell cycle dysregulation has the ability to lead to cancer. Based on its role in the cell cycle, CDK has become a natural target of anticancer therapy. Therefore, understanding the CDK structures and the complex formed with the drug, helps to foster the development of CDK inhibitors. This development starts from non-selective CDK inhibitors to selective CDK4/CDK6 inhibitors, and these have been applied in clinical cancer treatment. However, these inhibitors currently require further development for various hematologic malignancies and solid tumors, based on the results demonstrated. In drug development, the main strategy is primarily to prevent and asphyxiate drug resistance, thus a determination of specific biomarkers is required to increase the therapy’s effectiveness as well as patient selection suitability in order to avoid therapy failure. This review is expected to serve as a reference for early and advanced-stage researchers in designing new molecules or repurposing existing molecules as CDK4/CDK6 inhibitors to treat breast cancer.  相似文献   

6.
选取64个具有潜力的含磷嘧啶类细胞周期依赖性蛋白激酶(CDK9)小分子抑制剂,采用分子对接方法研究了该类小分子与CDK9的结合作用,结果表明,分子构象、氢键形成、疏水性和氨基酸残基Cys106在此类抑制剂与CDK9的结合过程中具有重要作用.在配体叠合的基础上,运用比较分子力场分析(Co MFA)、比较分子相似性指数分析(Co MSIA)和Topomer Co MFA(T-COMFA)研究了分子结构与抑制活性的关系,发现由训练集立体场、静电场和疏水场组合的Co MSIA模型为最优模型,其内部交叉验证相关系数(Q2=0.557)、非交叉验证相关系数(R2=0.959)和外部预测相关系数(r2=0.863)具有统计学意义,该模型的三维等值线图直观显示了化合物的活性与其三维结构的关系.根据这些结果设计了10个具有新结构的含磷嘧啶类化合物,分子对接和分子动力学模拟结果表明,新化合物和CDK9的结合模式与原化合物64相同,自由能分析从理论上证明了新化合物64d的CDK9抑制活性优于化合物64,并且显示含磷基团与残基Asp109的静电场能在化合物与CDK9作用过程中有重要作用.  相似文献   

7.
8.
In this study, electrospray ionization mass spectrometry (ESI-MS) was used to investigate the binding interactions of ten flavonoid aglycones and ten flavonoid glycosides with DNA duplexes. Relative binding affinities of the flavonoids toward DNA duplexes were estimated based on the fraction of bound DNA. The results revealed that the 4'-OH group of flavonoid aglycones was essential for their DNA-binding properties. Flavonoid glycosides with sugar chain linked on ring A or ring B showed enhanced binding toward the duplexes over their aglycone counterparts, whereas glycosylation of the flavonol quercetin on ring C exhibited a less pronounced effect. The aglycone skeletons and other hydroxyl substitutions on the aglycone also have an effect on the fractions of bound DNA. Upon collision-induced dissociation, the complexes containing flavonoid aglycones underwent the predominant ejection of a neutral ligand molecule, suggesting an intercalative DNA-binding mode. However, for complexes containing flavonoid glycosides, the loss of nucleobase increased to different extents, indicating a stronger binding or different binding mode. The results may provide not only a deeper insight into the DNA-binding properties of flavonoids but also a useful guideline for the design of efficient DNA-binding agents for chemotherapy.  相似文献   

9.
Flavonoids are plant secondary metabolites often used as nutraceutical supplements, but a growing number of unnatural flavonoids are being investigated as therapeutic agents. Cultures of Saccharomyces cerevisiae expressing recombinant flavonoid enzymes, including 4-coumaroyl:CoA ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), and flavanone 3beta-hydroxylase (FHT), produced novel flavanones and dihydroflavonols when fed with a number of aromatic acrylic acids. The flavonoid network also exhibited broad substrate specificity by converting muconic acid into a unique polypropanoid.  相似文献   

10.
Synthesis of indolo[6,7-a]pyrrolo[3,4-c]carbazoles 1, a new class of cyclin D1/CDK4 inhibitors, by oxidation of the corresponding aryl indolylmaleimides 2, will be described. Two approaches to the synthesis of 2 were identified that required new methods for the synthesis of 7-substituted indole acetamides 3 and N-methyl (indol-7-yl)oxoacetates 6. The chemistry developed enabled introduction of functionality (-OR, NR(2)) at C(12) and N(13) facilitating structure-activity relationship (SAR) evaluation of this indolocarbazole platform.  相似文献   

11.
The human secretory phospholipase A2 group IIA (PLA2-IIA) is a lipolytic enzyme. Its inhibition leads to a decrease in eicosanoids levels and, thereby, to reduced inflammation. Therefore, PLA2-IIA is of high pharmacological interest in treatment of chronic diseases such as asthma and rheumatoid arthritis. Quercetin and naringenin, amongst other flavonoids, are known for their anti-inflammatory activity by modulation of enzymes of the arachidonic acid cascade. However, the mechanism by which flavonoids inhibit Phospholipase A2 (PLA2) remained unclear so far. Flavonoids are widely produced in plant tissues and, thereby, suitable targets for pharmaceutical extractions and chemical syntheses. Our work focuses on understanding the binding modes of flavonoids to PLA2, their inhibition mechanism and the rationale to modify them to obtain potent and specific inhibitors. Our computational and experimental studies focused on a set of 24 compounds including natural flavonoids and naringenin-based derivatives. Experimental results on PLA2-inhibition showed good inhibitory activity for quercetin, kaempferol, and galangin, but relatively poor for naringenin. Several naringenin derivatives were synthesized and tested for affinity and inhibitory activity improvement. 6-(1,1-dimethylallyl)naringenin revealed comparable PLA2 inhibition to quercetin-like compounds. We characterized the binding mode of these compounds and the determinants for their affinity, selectivity, and inhibitory potency. Based on our results, we suggest C(6) as the most promising position of the flavonoid scaffold to introduce chemical modifications to improve affinity, selectivity, and inhibition of PLA2-IIA by flavonoids.  相似文献   

12.
The inhibition of cyclin dependent kinases 4 and 6 plays a role in aromatase inhibitor resistant metastatic breast cancer. Three dual CDK4/6 inhibitors have been approved for the breast cancer treatment that, in combination with the endocrine therapy, dramatically improved the survival outcomes both in first and later line settings. The developments of the last five years in the search for new selective CDK4/6 inhibitors with increased selectivity, treatment efficacy, and reduced adverse effects are reviewed, considering the small-molecule inhibitors and proteolysis-targeting chimeras (PROTACs) approaches, mainly pointing at structure-activity relationships, selectivity against different kinases and antiproliferative activity.  相似文献   

13.
The cell division cycle is controlled by cyclin-dependent kinases (CDK), which consist of a catalytic subunit (CDK1-CDK8) and a regulatory subunit (cyclin A-H). Pharmacophore analysis indicates that the best inhibitor model consists of (1) two hydrogen bond acceptors, (2) one hydrogen bond donor, and (3) one hydrophobic feature. The HypoRefine pharmacophore model gave an enrichment factor of 1.31 and goodness of fit score of 0.76. Docking studies were carried out to explore the structural requirements for the CDK2-cyclin A inhibitors and to construct highly predictive models for the design of new inhibitors. Docking studies demonstrate the important role of hydrogen bond and hydrophobic interactions in determining the inhibitor-receptor binding affinity. The validated pharmacophore model is further used for retrieving the most active hits/lead from a virtual library of molecules. Subsequently, docking studies were performed on the hits, and novel series of potent leads were suggested based on the interaction energy between CDK2-cyclin A and the putative inhibitors.  相似文献   

14.
We describe a method to create ligands specific for a given protein family. The method is applied to generate ligand candidates for the cyclin-dependent kinase (CDK) family. The CDK family of proteins is involved in regulating the cell cycle by alternately activating and deactivating the cell's progression through the cycle. CDKs are activated by association with cyclin and are inhibited by complexation with small molecules. X-ray crystal structures are available for three of the thirteen known CDK family members: CDK2, CDK5 and CDK 6. In this work, we use novel computational approaches to design ligand candidates that are potentially inhibitory across the three CDK family members as well as more specific molecules which can potentially inhibit one or any combination of two of the three CDK family members. We define a new scoring term, SpecScore, to quantify the potential inhibitory power of the generated structures. According to a search of the World Drug Alerts, the highest scoring SpecScore molecule that is specific for the three CDK family members shows very similar chemical characteristics and functional groups to numerous molecules known to deactivate several members of the CDK family.  相似文献   

15.
To clarify the structure-activity correlation of flavonoids for inhibition of aldose reductase, about fifty flavonoid compounds were screened. The presence of hydrophobic substituents on the A ring and hydrophilic substituents on the B ring of the flavonoid skeleton was suggested to improve the potency of inhibitory activity. The activities of extracts of Scutellaria baicalensis, Andrographis paniculata and Gutierrezia microcephala are also described.  相似文献   

16.
Examining the potential for electrostatic complementarity between a ligand and a receptor is a useful technique for rational drug design, and can demonstrate how a system prioritizes interactions when allowed to optimize its charge distribution. In this computational study, we implemented the previously developed, continuum solvent-based charge optimization theory with a simple, quadratic programming algorithm and the UHBD Poisson-Boltzmann solver. This method allows one to compute the best set of point charges for a ligand or ligand region based on the ligand and receptor shape, and the receptor partial charges, by optimizing the binding free energy obtained from a continuum-solvent model. We applied charge optimization to a fragment of the heat-stable protein kinase inhibitor (PKI) of protein kinase A (PKA), to three flavopiridol inhibitors of CDK2, and to cyclin A which interacts with CDK2 to regulate the cell cycle. We found that a combination of global (involving every charge) and local (involving only charges in a local region) optimization can give useful hints for designing better inhibitors. Although some parts of an inhibitor may already contribute significantly to binding, we found that they could still be the most important targets for modifications to obtain stronger binders. In studying the binding of flavopiridol inhibitors to CDK2, comparable binding affinity could be obtained regardless of whether the net charges of the inhibitors were constrained to -2, -1, 0, 1, or 2 during the optimization. This provides flexibility in inhibitor design when a certain net charge of the inhibitor is desired in addition to strong binding affinity. For the study of the PKA-PKI and CDK2-cyclin A interfaces, we identified residues whose charge distributions are already close to optimal and those whose charge distributions could be refined to further improve binding.  相似文献   

17.
《Analytical letters》2012,45(4):521-532
Abstract

Dietary flavonoids can be detected in plasma as protein‐bound conjugates. Flavonoids–protein interaction is expected to modulate the bioavailability of flavonoids. In this work, the binding flavonoid isomers (galangin, baicalein, apigenin, and genistein; MW=270.25) and B‐ring hydroxylation flavonols (galangin, kaempferol, quercetin, and myricetin, which share the same structure on the A and C rings but have 0, 1, 2, and 3 moieties of ‐OH on the B‐ring, respectively) to protein were investigated by fluorescence quenching method. The apparent binding constants (K a ) of were flavonoid isomers determined as: flavones (106–107 L mol?1)>isoflavone≈flavonol (105 L mol?1). For B‐ring hydroxylation flavonols, the binding affinity increased with increasing number of hydroxyl groups on the B‐ring. The binding constants (K a ) were determined as follows: myricetin>quercetin>kaempferol>galangin.  相似文献   

18.
A series of RuII–arene complexes ( 1 – 6 ) of the general formula [(η6‐arene)Ru(L)Cl]PF6 (arene=benzene or p‐cymene; L=bidentate β‐carboline derivative, an indole alkaloid with potential cyclin‐dependent kinases (CDKs) inhibitory activities) is reported. All the complexes were fully characterized by classical analytical methods, and three were characterized by X‐ray crystallography. Hydrolytic studies show that β‐carboline ligands play a vital role in their aqueous behaviour. These complexes are highly active in vitro, with the most active complex 6 displaying a 3‐ to 12‐fold higher anticancer activity than cisplatin against several cancer cell lines. Interestingly, the complexes are able to overcome cross‐resistance to cisplatin, and show much lower cytotoxicity against normal cells. Complexes 1 – 6 may directly target CDK1, because they can block cells in the G2M phase, down‐regulate the expression of CDK1 and cyclin B1, and inhibit CDK1/cyclin B in vitro. Further mechanism studies show that the complexes can effectively induce apoptosis through mitochondrial‐related pathways and intracellular reactive oxygen species (ROS) elevation.  相似文献   

19.
细胞周期蛋白激酶(cyclin-dependent kinases, CDKs)是近年来治疗肿瘤的重要靶标. 由于大多数激酶ATP结合位点的保守性, CDK选择性激酶抑制剂的开发成为当前的研发难点和热点. 针对吲哚咔唑类CDK抑制剂, 我们采用比较分子力场分析方法(CoMFA)建立了CDK2-QSAR(quantitative structure-activity relationship)和CDK4-QSSR(quantitative structure-selectivity relationship)模型. 所建模型的交叉验证系数q2分别为0.722和0.703; 非交叉验证系数r2分别为0.977和0.946, 表明其具有较好的预测能力. 同时, 用分子对接的方法分析了这类化合物与CDK4同源模建结构的作用模式, 根据这两个模型发现, 吲哚咔唑类化合物的R5和R6位长链取代对CDK4的选择性具有一定的影响, 而且结合其作用模式比较合理地解释了这类抑制剂的选择性原因, 这对CDKs的选择性研究具有一定的指导意义.  相似文献   

20.
In this study we investigated the effect of the dietary ingredients fruit and vegetable, green tea phenol extract (GTP) and the specific flavonoid components quercetin and chrysin on the UV-induced suppression of the con-tact hypersensitivity (CHS) response to picryl chloride (PCl). The SKH-1 mice were fed with test diet from 2 or 4 weeks before and during the UV irradiation (daily, 95 mJ/cm2) and tested for the CHS ear-swelling response 10 weeks after the onset of the irradiation. For the CHS, mice were immunized with PCl by epicutaneous application on nonirradiated sites. Four days after sensitization all mice were challenged on both sides of each ear by topical application of one drop PCl. In addition, from mice fed with the fruit and vegetable mixture the number of Langerhans cells (LC) were scored in the skin and from mice fed with quercetin, quercetin levels in plasma were measured at week 11 after the start of UV irradiation. It was found that fruit and vegetable (19% in the diet), GTP (0.1% and 0.01% in the drinking water), quercetin (1% in the diet) and chrysin (1% and 0.1% in the diet), prevented statistically significantly the UV-induced suppression of CHS to PCl. In the skin of mice fed with fruit and vegetables combined with UV irradiation the number of LC were comparable to the control mice, whereas the number of LC were significantly diminished in mice treated with UV only. This protective effect on the presence of LC in the epidermis after UV irradiation, which was also observed in a previous study with quercetin, may play a role in the prevention of UV-induced immunosuppression by the flavonoids tested. In conclusion, we found protection of flavonoids against UV-induced effects on CHS, which may be a common feature of most flavonoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号