首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The multistage mass spectrometric (MS/MS and MS3) gas-phase fragmentation reactions of methionine side-chain sulfonium ion containing peptides formed by reaction with a series of para-substituted phenacyl bromide (XBr where X=CH2COC6H4R, and R=--COOH, --COOCH3, --H, --CH3 and --CH2CH3) alkylating reagents have been examined in a linear quadrupole ion trap mass spectrometer. MS/MS of the singly (M+) and multiply ([M++nH](n+1)+) charged precursor ions results in exclusive dissociation at the fixed charge containing side chain, independently of the amino acid composition and precursor ion charge state (i.e., proton mobility). However, loss of the methylphenacyl sulfide side-chain fragment as a neutral versus charged (protonated) species was observed to be highly dependent on the proton mobility of the precursor ion, and the identity of the phenacyl group para-substituent. Molecular orbital calculations were performed at the B3LYP/6-31+G** level of theory to calculate the theoretical proton affinities of the neutral side-chain fragments. The log of the ratio of neutral versus protonated side-chain fragment losses from the derivatized side chain were found to exhibit a linear dependence on the proton affinity of the side-chain fragmentation product, as well as the proton affinities of the peptide product ions. Finally, MS3 dissociation of the nominally identical neutral and protonated loss product ions formed by MS/MS of the [M++H]2+ and [M++2H]3+ precursor ions, respectively, from the peptide GAILM(X)GAILK revealed significant differences in the abundances of the resultant product ions. These results suggest that the protonated peptide product ions formed by gas-phase fragmentation of sulfonium ion containing precursors in an ion trap mass spectrometer do not necessarily undergo intramolecular proton 'scrambling' prior to their further dissociation, in contrast to that previously demonstrated for peptide ions introduced by external ionization sources.  相似文献   

2.
A mass spectrometric method is presented for the rapid identification of compounds that contain the aromatic N-oxide functional group. This method utilizes a gas-phase ion/molecule reaction with 2-methoxypropene that yields a stable adduct for protonated aromatic tertiary N-oxides (and with one protonated nitrone) in different mass spectrometers. A variety of protonated analytes with O- or N-containing functional groups were examined to probe the selectivity of the reaction. Besides protonated aromatic tertiary N-oxides and one nitrone, only three protonated amines were found to form a stable adduct but very slowly. All the other protonated analytes, including aliphatic tertiary N-oxides, primary N-oxides, and secondary N-oxides, are unreactive toward or react predominantly by proton transfer with 2-methoxypropene.  相似文献   

3.
Mass spectrometric and tandem mass spectrometric behavior of eight anabolic steroid glucuronides were examined using electrospray (ESI) and atmospheric pressure chemical ionization (APCI) in negative and positive ion mode. The objective was to elucidate the most suitable ionization method to produce intense structure specific product ions and to examine the possibilities of distinguishing between isomeric steroid glucuronides. The analytes were glucuronide conjugates of testosterone (TG), epitestosterone (ETG), nandrolone (NG), androsterone (AG), 5alpha-estran-3alpha-ol-17-one (5alpha-NG), 5beta-estran-3alpha-ol-17-one (5beta-NG), 17alpha-methyl-5alpha-androstane-3alpha,17beta-diol (5alpha-MTG), and 17alpha-methyl-5beta-androstane-3alpha,17beta-diol (5beta-MTG), the last four being new compounds synthesized with enzyme-assisted method in our laboratory. High proton affinity of the 4-ene-3-one system in the steroid structure favored the formation of protonated molecule [M + H]+ in positive ion mode mass spectrometry (MS), whereas the steroid glucuronides with lower proton affinities were detected mainly as ammonium adducts [M + NH4]+. The only ion produced in negative ion mode mass spectrometry was a very intense and stable deprotonated molecule [M - H]- . Positive ion ESI and APCI MS/MS spectra showed abundant and structure specific product ions [M + H - Glu]+, [M + H - Glu - H2O]+, and [M + H - Glu - 2H2O]+ of protonated molecules and corresponding ions of the ammonium adduct ions. The ratio of the relative abundances of these ions and the stability of the precursor ion provided distinction of 5alpha-NG and 5beta-NG isomers and TG and ETG isomers. Corresponding diagnostic ions were only minor peaks in negative ion MS/MS spectra. It was shown that positive ion ESI MS/MS is the most promising method for further development of LC-MS methods for anabolic steroid glucuronides.  相似文献   

4.
We investigated a two-stage ion source for proton transfer reaction (PTR) ionization to achieve more selective mass spectrometric (MS) detection of selected volatile organic compounds (VOCs) than that achieved with commonly used PTR-MS instruments, which are based on single-step PTR ionization with H3O+. The two-stage PTR ion source generated reagent ions other than H3O+ by an initial PTR between H3O+ and a selected VOC, and then a second PTR ionization occurred only for VOCs with proton affinities larger than the affinity of the reagent VOC. Acetone and acetonitrile were useful as reagent VOCs because they provided dominant peaks as a protonated form. Using two-stage PTR-MS, we differentiated isomeric VOCs (for example, ethyl acetate and 1,4-dioxane) by means of differences in their proton affinities; protonated acetone formed the [M + H]+ ion from ethyl acetate but not from 1,4-dioxane. The PTR-MS-derived concentrations agreed quantitatively with those independently determined by Fourier transform infrared spectroscopy (FT-IR) at parts per million by volume (ppmv) levels. In addition, interfering fragment ions formed from alkyl benzenes at m/z 79 (C6H7+) could be distinguished from the m/z 79 ion arising from protonation of benzene, and therefore this method would prevent overestimation of benzene concentrations in air samples in which both benzene and alkyl benzenes are present. This two-stage PTR ionization may be useful for distinguishing various isomeric species, including aldehydes and ketones, if appropriate reagent ions are selected.  相似文献   

5.
The UV Spectra of pyridinium N-oxide perchlorates were determined in acetonitrile and compared with the spectrum of pyridine N-oxide. The spectrum of pyridine N-oxide perchlorate is entirely different from the spectra of hydride-bis-pyridine N-oxide perchlorate and pyridine N-oxide. The spectrum of hydride-bis-pyridine N-oxide perchlorate/basic salt/ is similar to that of the conjugate base, but it is not a linear combination of the spectra of the protonated and the unprotanated base species.  相似文献   

6.
用飞秒激光电离飞行时间质谱研究了吡啶分子团簇在400 nm波长下的多光子光电离,实验观测到一系列的质子化和非质子化团簇离子.结果表明,质子转移也能发生在弱氢键结合的分子间.通过分析离子峰宽和离子信号强度随气源压力的变化,得到质子化团簇离子来源于大团簇离子的碎裂,而非质子化团簇离子是中性团簇直接电离的结果.从头计算结果表明,吡啶团簇是通过弱氢键C-H…N 结合在一起的,并且团簇离子离解倾向于生成质子化产物.  相似文献   

7.
The gas-phase proton affinities of 4,4'-di(R)-2,2'-bipyridines (R: H, Br, Cl, NO(2), Me) were determined by mass spectrometric measurements and by ab initio calculations at the HF/6-31G and MP2/6-31G levels of theory. The energy barriers for rotation about the central C-C bond were also studied computationally. Two minima were found for both unprotonated and protonated species, the global minima being at the trans planar and cis planar conformations, respectively. Local minima for the unprotonated compounds were at the cis nonplanar conformation and for the protonated compounds at the trans nonplanar. Two different proton affinity values were calculated for each compound by employing different conformations for the protonated species. The computational values were in good agreement with the experimental proton affinities. Substituents affect the proton affinity according to their ability to withdraw or to donate electrons, halogen and nitro-substituted bipyridines having a lower proton affinity and methyl-substituted bipyridine having a higher proton affinity than 2,2'-bipyridine itself.  相似文献   

8.
Eleven doubly protonated peptides with a residue homologous to lysine were investigated by electron capture dissociation mass spectrometry (ECD-MS). Lysine homologues provide the unique opportunity to examine the ECD fragmentation behavior by allowing us to vary the length of the lysine side chain, with minimal structural change. The lysine homologue has a primary amine side chain with a length that successively decreases by one methylene (CH(2)) unit from the --CH(2)CH(2)CH(2)CH(2)NH(2) of lysine and the accompanying decrease of its proton affinities: lysine (K), 1006.5(+/-7.2) kJ/mol; ornithine (K(*)), 1001.1(+/-6.6) kJ/mol; 2,4-diaminobutanoic acid (K(**)), 975.8(+/-7.4) kJ/mol; 2,3-diaminopropanoic acid (K(***)), 950.2(+/-7.2) kJ/mol. In general, the lysine-homologous peptides exhibited overall ECD fragmentation patterns similar to that of the lysine-containing peptides in terms of the locations, abundances, and ion types of products, such as yielding c(+) and z(+.) ions as the dominant product ions. However, a close inspection of product ion mass spectra showed that ECD-MS for the alanine-rich peptides with an ornithinyl or 2,4-diaminobutanoyl residue gave rise to b ions, while the lysinyl-residue-containing peptides did not, in most cases, produce any b ions. The peptide selectivity in the generation of b(+) ions could be understood from within the framework of the mobile proton model in ECD-MS, previously proposed by Cooper (Ref. 29). The exact mass analysis of the resultant b ions reveals that these b ions are not radical species but rather the cationic species with R-CO(+) structure (or protonated oxozalone ion), that is, b(+) ions. The absence of [M+2H](+.) species in the ECD mass spectra and the selective b(+)-ion formation are evidence that the peptides underwent H-atom loss upon electron capture, and then the resulting reduced species dissociated following typical MS/MS fragmentation pathways. This explanation was further supported by extensive b(+) ions generated in the ECD of alanine-based peptides with extended conformations.  相似文献   

9.
A mass spectrometric study of three N-oxides, quinoline N-oxide, and the synthetic antibiotics carbadox and olaquindox, was carried out with a hybrid quadrupole/time-of-flight (TOF) mass spectrometer coupled with electrospray (ES) and atmospheric pressure chemical ionization (APCI) sources. The full scan mass spectra of the N-oxides obtained with ES are similar to those obtained with APCI, and the characteristic fragment ions corresponding to [M+H−O]+√ were observed in the full scan mass spectrum of each N-oxide examined. The protonated molecule of each N-oxide was subjected to collision-induced dissociation (CID) and accurate mass measurements were made of each fragment ion so as to determine its elemental composition. Fragment ions generated at enhanced cone voltages upstream of the first mass-resolving element were subjected to CID so as to identify the direct product ion–precursor ion relationship. Plausible structures have been proposed for most of the fragment ions observed. Elimination of OH√ radicals generated from the N→O functional group is a characteristic fragmentation pathway of the N-oxides. The expulsion of radicals and small stable molecules is accompanied by formation and subsequent contraction of heterocyclic rings.  相似文献   

10.
Studies using ammonia as a selective reagent gas in chemical ionization mass spectrometry were extended to conjugated ketones. Their proton affinities were in the range of most nitrogen-containing compounds (> 207 ± 3 kcal/mole), thereby permitting proton transfer from [NH4]+-, leading to well stabilized protonated molecular ions as the most abundant ion products.  相似文献   

11.
Molecular weights of macrolide antibiotics can be determined from either (M + H)+ or (M + Met)+, the latter desorbed from alkali metal salt-saturated matrices. The ion chemistry of macrolides, as determined by tandem mass spectrometry (MS/MS), is different for ions produced as metallated than those formed as (M + H)+ species. An explanation for these differences is the location of the charge. For protonated species, the charge is most likely situated on a functional group with high proton affinity, such as the dimethylamino group of the ammo sugar. The alkali metal ion, however, is bonded to the highly oxygenated aglycone. As a result, the collision-activated dissociation spectra of protonated macrolides are simple with readily identifiable fragment ions in both the high and low mass regions but no fragments in the middle mass range. In contrast, the cationized species give complex spectra with many abundant ions, most of which are located in the high mass range. The complementary nature of the fragmentation of these two species recommends the study of both by MS/MS when determining the structure or confirming the identity of these biomaterials.  相似文献   

12.
Electrospray ionization (ESI) tandem mass spectrometry (MS) has simplified analysis of phospholipid mixtures, and, in negative ion mode, permits structural identification of picomole amounts of phospholipid species. Collisionally activated dissociation (CAD) of phospholipid anions yields negative ion tandem mass spectra that contain fragment ions representing the fatty acid substituents as carboxylate anions. Glycerophosphocholine (GPC) lipids contain a quaternary nitrogen moiety and more readily form cationic adducts than anionic species, and positive ion tandem mass spectra of protonated GPC species contain no abundant ions that identify fatty acid substituents. We report here that lithiated adducts of GPC species are readily formed by adding lithium hydroxide to the solution in which phospholipid mixtures are infused into the ESI source. CAD of [MLi+] ions of GPC species yields tandem mass spectra that contain prominent ions representing losses of the fatty acid substituents. These ions and their relative abundances can be used to assign the identities and positions of the fatty acid substituents of GPC species. Tandem mass spectrometric scans monitoring neutral losses of the head-group or of fatty acid substituents from lithiated adducts can be used to identify GPC species in tissue phospholipid mixtures. Similar scans monitoring parents of specific product ions can also be used to identify the fatty acid substituents of GPC species, and this facilitates identification of distinct isobaric contributors to ions observed in the ESI/MS total ion current.  相似文献   

13.
The coupling reaction of pyridine in the gas phase to form bipyridyl and terpyridyl has been studied by electron ionization using an ion trap mass spectrometer. In contrast to the difficulty in carrying out electrophilic substitutions at carbon atoms in the pyridine ring under highly acidic solvent conditions, reactions in the gas phase overcame the conjugate acidification of pyridine in the solvent phase, thus decreasing the hardness of this electrophilic coupling. Through product ion mass spectra of the ion at m/z 157, we have shown that this ion was protonated bipyridyl rather than the ion/molecule adduct. A computational study of the heat of formation surface also supported the formation of polypyridyls through the electrophilic substitution of pyridine. We have confirmed the reaction through a study of pyridine-d(5) coupling in the gas phase.  相似文献   

14.
A novel mass spectrometric method for the selective detection of specific protein-ligand complexes is presented. The new method is based on electrosonic spray ionization of samples containing protein and ligand molecules, and mass spectrometric detection using the precursor ion scanning function on a triple quadrupole instrument. Mass-selected intact protein-ligand complex ions are subjected to fragmentation by means of collision-induced dissociation in the collision cell of the instrument, while the second mass analyzer is set to the m/z of protonated ligand ions or their alkali metal adducts. The method allows for the detection of only those ions which yield ions characteristic of the ligand molecules upon fragmentation. Since the scan range of first analyzer is set well above the m/z of the ligand ion, and the CID conditions are established to permit fragmentation of only loosely bound, noncovalent complexes, the method is specific to the detection of protein-ligand complexes under described conditions. Behavior of biologically specific and nonspecific complexes was compared under various instrumental settings. Parameters were optimized to obtain maximal selectivity for specific complexes. Specific and nonspecific complexes were found to show markedly different fragmentation characteristics, which can be a basis for selective detection of complexes with biological relevance. Preparation of specific and nonspecific complexes containing identical building blocks was attempted. Complex ions with identical stoichiometry but different origin showed the expected difference in fragmentation characteristics, which gives direct evidence for the different mechanism of specific versus nonspecific complex ion formation.  相似文献   

15.
Wheat straw lignin was extracted using the novel CIMV procedure which selectively separates the cellulose, hemicelluloses and lignin. Solid-state (13)C NMR experiments using cross polarization/magic angle spinning (CP/MAS) were carried out on the extracted wheat straw lignin and some structural indices were revealed. Atmospheric pressure photoionization mass spectrometry (APPI-MS) has proven to be a powerful analytical tool capable of ionizing small to large lignin oligomers, which cannot be ionized efficiently by atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI). The APPI mass spectra of the extracted wheat straw lignin were recorded in the positive and negative ion modes. Positive ion mode APPI-MS indicated the exact presence of 39 specific oligomeric ions. Negative ion APPI-MS indicated the additional presence of at least 18 specific oligomeric ions. The structural characterization of this novel and complete series of 57 specific related oligomers was achieved by calculating the exact molecular masses measured by high-resolution quadrupole time-of-flight mass spectrometry (QqToF-MS). Some oligomeric species photoionized in both the positive and negative ion modes to form the respective protonated and deprotonated molecules. Low-energy collision-induced dissociation tandem mass spectrometric analyses performed with a QqToF-MS/MS hybrid instrument provided unique dissociation patterns of the complete series of novel precursor ions. These MS/MS analyses provided diagnostic product ions, which enabled us to determine the exact molecular structures and arrangement of the selected 57 different related ionic species.  相似文献   

16.
A novel approach to the analysis of ecstasy tablets by direct mass spectrometry coupled with thermal desorption (TD) and counter‐flow introduction atmospheric pressure chemical ionization (CFI‐APCI) is described. Analytes were thermally desorbed with a metal block heater and introduced to a CFI‐APCI source with ambient air by a diaphragm pump. Water in the air was sufficient to act as the reactive reagent responsible for the generation of ions in the positive corona discharge. TD‐CFI‐APCI required neither a nebulizing gas nor solvent flow and the accompanying laborious optimizations. Ions generated were sent in the direction opposite to the air flow by an electric field and introduced into an ion trap mass spectrometer. The major ions corresponding to the protonated molecules ([M + H]+) were observed with several fragment ions in full scan mass spectrometry (MS) mode. Collision‐induced dissociation of protonated molecules gave characteristic product‐ion mass spectra and provided identification of the analytes within 5 s. The method required neither sample pretreatment nor a chromatographic separation step. The effectiveness of the combination of TD and CFI‐APCI was demonstrated by application to the direct mass spectrometric analysis of ecstasy tablets and legal pharmaceutical products. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Low-energy collision-induced dissociation of some representative 3-picolinyl esters of fatty acids were investigated. The daughter-ion spectra of the precursor ions showed similar features to the electron impact mass spectra, but the low intensity of the parent-ion signal did not allow reliable deductions. The parent-ion spectra of some fragments that retain the pyridine derivatizing group contain structurally useful information, and are suitable for analytical application. These spectra also contain fragment ions which may account for an alternative pathway to that currently proposed for the generation of certain fragment ions within the ion source. Both pathways were investigated in this tandem mass spectrometric study. Isomerization and decomposition of distonic fragment ions through loss of alkenes yield species with a shorter alkyl chain, which are particularly stable when they contain allylic radicals.  相似文献   

18.
Transfer RNA is a class of highly modified and structured non-coding RNA molecules generally comprised of 74–95 nucleotides. In this study, tandem mass spectrometry of intact multiply charged tRNA anions of roughly 25 kDa in mass has been demonstrated using a quadrupole/time-of-flight tandem mass spectrometer adapted for ion/ion reaction studies. The sample proved to be a mixture of tRNA molecules. The mass of the most abundant component of the mixture was not consistent with that of the nominal identity of the tRNA from the supplier, viz., tRNAphe; rather, the mass was consistent with tRNAPhe bearing an incomplete 3′-terminus. Multiply-charged anions from the major components were isolated in the gas phase and subjected to ion trap collision-induced dissociation without subsequent ion/ion reactions. Abundant fragments from the 5′- and 3′-termini of the molecule could be used to identify the major component as tRNAphe-3′adenosine (without 3′-phosphorylation). Roughly 15% of the primary sequence of the intact tRNA was unambiguously reflected in the product ion spectrum. The existence of a possible tRNAPhe variant and the intact tRNAPhe was also supported by ion trap CID data. The multiply-charged fragment ions derived from tRNAPhe-3′adenosine were further charge-reduced to mostly singly- and doubly-charged species via proton transfer ion/ion reactions with benzoquinoline cations. The resulting reduction in spectral overlap and charge state ambiguity simplified interpretation of the product ion spectrum and allowed for the identification of product ions from roughly 60% of the sequence.  相似文献   

19.
The dependence of the protonation of neutral ammonia on the axial kinetic energy of protonated reactant ions has been studied in the gas phase, using various protonated carbonyl compounds, inside the collision cell of a tandem quadrupole mass spectrometric system. The hypothesis of two different and non-competitive reaction channels has been proposed. The first is characterized by a very low (peaked at ±0.05 eVcm) and well-defined axial kinetic energy of the reactant ion, while the second is more energy demanding (estimated threshold at ±0.2 eVcm) and expressed by a collisionally induced dissociation-like energy curve. Fourier transform mass spectrometric experiments have shown that ammonium ion can be generated by direct proton exchange and fragmentation of the adduct ion obtained.  相似文献   

20.
Fragmentation behavior of fucosylated N-glycans in both protonated and sodiated form was studied by low-energy collision-induced dissociation with an ion trap mass spectrometer as well as by laser-induced dissociation with matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF-MS). Diantennary, core-(alpha1-6)-fucosylated N-glycans with Lewis X (Gal(beta1-4)[Fuc(alpha1-3)]GlcNAcbeta1-) and/or fucosylated LacdiNAc antennae (GalNAc(beta1-4)[Fuc(alpha1-3)]GlcNAcbeta1-) were obtained from the human parasite Schistosoma mansoni and used as model substances, after labeling with 2-aminobenzamide, or as native reducing glycans. While fragment spectra of sodiated as well as protonated species obtained in both mass spectrometers resulted in B- and Y-type ions, fragmentation of proton adducts additionally gave rise to various fragment ions which had acquired fucose residues from other parts of the molecule. In particular, fucose was transferred efficiently to the Lewis X antennae suggesting the occurrence of difucosylated antennae, which could erroneously be interpreted as Lewis Y epitopes. By studying two additional model substances, this fucose gain was shown to occur by transfer of fucose between the antennae, but not by transfer of a core-(alpha1-6)-fucose. Despite the drastically different lifetimes of the ions, protonated species analyzed on the ion trap (millisecond range) and by MALDI-TOF/TOF-MS (microsecond range) showed similar rearrangement patterns, suggesting that the fucose mobility goes hand in hand with decomposition. Notably, permethylation of the model N-glycans seemed to completely preclude fucose migration. This study indicates that caution should be applied with the interpretation of tandem mass spectrometric (MS/MS) data of protonated glycoconjugates, including glycopeptides, because of the potential occurrence of fucose rearrangements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号