共查询到20条相似文献,搜索用时 10 毫秒
1.
Amyloid fibril formation, as observed in Alzheimer's disease and type II diabetes, is currently described by a nucleation-condensation mechanism, but the details of the process preceding the formation of the nucleus are still lacking. In this study, using an activation-relaxation technique coupled to a generic energy model, we explore the aggregation pathways of 12 chains of the hexapeptide NFGAIL. The simulations show, starting from a preformed parallel dimer and ten disordered chains, that the peptides form essentially amorphous oligomers or more rarely ordered beta-sheet structures where the peptides adopt a parallel orientation within the sheets. Comparison between the simulations indicates that a dimer is not a sufficient seed for avoiding amorphous aggregates and that there is a critical threshold in the number of connections between the chains above which exploration of amorphous aggregates is preferred. 相似文献
2.
Mario Vázquez‐Villavicencio Andrea Aburto Emilio Orgaz 《International journal of quantum chemistry》2012,112(5):1507-1513
We have theoretically investigated the formation of Li:B:H clusters from standard reactants in gas phase. Molecular electronic structure computations as well as Born‐Oppenheimer molecular dynamics have been carried out to investigate the early stages of the formation of Li:B:H clusters. We describe the thermochemical properties of the different possible reactions and the first stable structures that could initiate the growing process. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012 相似文献
3.
4.
《Chemistry & biology》1997,4(5):345-355
Background: Peptides derived from three of four putative α-helical regions of the prion protein (PrP) form amyloid in solution. These peptides serve as models for amyloidogenesis and for understanding the α helix → β strand conformational change that is responsible for the development of disease. Kinetic studies of amyloid formation usually rely on the detection of fibrils. No study has yet explored the rate of monomer peptide uptake or the presence of nonfibrillar intermediate species. We present a new electron spin resonance (ESR) method for probing the kinetics of amyloid formation. A spin label was covalently attached to a highly amyloidogenic peptide and kinetic trials were monitored by ESR.Results: Electron microscopy shows that the spin-labeled peptide forms amyloid, and ESR reveals the kinetic decay of free peptide monomer during amyloid formation. The combination of electron microscopy and ESR suggests that there are three kinetically relevant species: monomer peptide, amyloid and amorphous aggregate (peptide aggregates devoid of fibrils or other structures with long-range order). A rather surprising result is that amyloid formation requires the presence of this amorphous aggregate. This is particularly interesting because PrPSc the form of PrP associated with scrapie, is often found as an aggregate and amyloid formation is not a necessary component of prion replication or pathogenesis.Conclusions: Kinetic analysis of the time-dependent data suggests a model whereby the amorphous aggregate has a previously unsuspected dual role: it releases monomer into solution and also provides initiation sites for fibril growth. These findings suggest that the β-sheet-rich PrPSc may be stabilized by aggregation. 相似文献
5.
6.
Balucani N 《Chemical Society reviews》2012,41(16):5473-5483
Gas-phase reactions involving atomic nitrogen in the ground (4)S and first excited (2)D electronic states with simple hydrocarbons or hydrocarbon radicals lead to the formation of prebiotic N-containing organic molecules. These reactions are now active in the upper atmosphere of Titan (a massive moon of Saturn) and might have played an important role in nitrogen fixation in the primitive upper terrestrial atmosphere, assuming that it is similar to the present atmosphere of Titan. The products of these reactions (nitriles, imines and radicals) are the precursors of larger N-containing molecules, which form the dense haze aerosols that completely cover the moon of Saturn. If anything similar to Titan's haze has ever existed on our planet, it is reasonable to imagine that, once deposited on the surface of the oceans, further chemical evolution might have transformed these molecules into aminoacids and nucleobases, the molecular building blocks of living entities. The experimental techniques necessary to investigate these reactions in detail are presented and the main results reviewed. 相似文献
7.
Morgan DM Dong J Jacob J Lu K Apkarian RP Thiyagarajan P Lynn DG 《Journal of the American Chemical Society》2002,124(43):12644-12645
The role of Zn2+ in pre-organizing Abeta(10-21) amyloid formation is shown to preferentially alter the relative rate of fibril nucleation and to have little influence on fibril propagation. Fibril morphology, as determined by small angle neutron scattering (SANS) and transmission electron microscopy (TEM), was unchanged in the presence and absence of Zn2+ in Abeta(10-21), as well as in a series of site-specifically altered variants. The metal-independence of the Abeta(10-21)H13Q peptide suggested that the increase in nucleation rate in Abeta(10-21) is due to Zn2+-mediated inter-sheet interactions, involving both histidine 13 and histidine 14. 相似文献
8.
Van Vranken DL 《Chemistry & biology》2004,11(12):137-1606
In this issue of Chemistry & Biology, Purkey et al. [1] compare the binding of PCBs and hydroxylated PCBs (polychlorinated biphenyls) with the human serum protein transthyretin. Hydroxylated PCBs appear to bind with higher selectivity to transthyretin relative to other serum proteins and in so doing inhibit amyloid fibril formation. 相似文献
9.
The effect of poly(ethylene glycol) PEG crystallization on beta-sheet fibril formation is studied for a series of three peptide/PEG conjugates containing fragments modified from the amyloid beta peptide, specifically KLVFF, FFKLVFF, and AAKLVFF. These are conjugated to PEG with M n = 3300 g mol (-1). It is found, via small-angle X-ray scattering, X-ray diffraction, atomic force microscopy, and polarized optical microscopy, that PEG crystallinity in dried samples can disturb fibrillization, in particular cross-beta amyloid structure formation, for the conjugate containing the weak fibrillizer KLVFF, whereas this is retained for the conjugates containing the stronger fibrillizers AAKLVFF and FFKLVFF. For these two samples, the alignment of peptide fibrils also drives the orientation of the attached PEG chains. Our results highlight the importance of the antagonistic effects of PEG crystallization and peptide fibril formation in PEG/peptide conjugates. 相似文献
10.
Mesquida P Blanco EM McKendry RA 《Langmuir : the ACS journal of surfaces and colloids》2006,22(22):9089-9091
Surface charge patterns generated by atomic force microscopy-based charge writing were used to pattern amyloid-like peptide fibrils on a solid substrate. Fibrils of the short peptide TTR105-115 were encapsulated inside water droplets of a water-in-perfluorocarbon oil emulsion and retained their rod morphology. They were observed to deposit selectively with a lateral resolution of approximately 1 microm onto negatively charged patterns on a polymethyl-methacrylate substrate. 相似文献
11.
Madhu Nagaraj Zahra Najarzadeh Jonathan Pansieri Henrik Biverstl Greta Musteikyte Vytautas Smirnovas Steve Matthews Cecilia Emanuelsson Janne Johansson Joel N. Buxbaum Ludmilla Morozova-Roche Daniel E. Otzen 《Chemical science》2022,13(2):536
Unlike misfolding in neurodegenerative diseases, aggregation of functional amyloids involved in bacterial biofilm, e.g. CsgA (E. coli) and FapC (Pseudomonas), is carefully regulated. However, it is unclear whether functional aggregation is inhibited by chaperones targeting pathological misfolding and if so by what mechanism. Here we analyze how four entirely different human chaperones or protein modulators (transthyretin, S100A9, Bri2 BRICHOS and DNAJB6) and bacterial CsgC affect CsgA and FapC fibrillation. CsgA is more susceptible to inhibition than FapC and the chaperones vary considerably in the efficiency of their inhibition. However, mechanistic analysis reveals that all predominantly target primary nucleation rather than elongation or secondary nucleation, while stoichiometric considerations suggest that DNAJB6 and CsgC target nuclei rather than monomers. Inhibition efficiency broadly scales with the chaperones'' affinity for monomeric CsgA and FapC. The chaperones tend to target the most aggregation-prone regions of CsgA, but do not display such tendencies towards the more complex FapC sequence. Importantly, the most efficient inhibitors (Bri2 BRICHOS and DNAJB6) significantly reduce bacterial biofilm formation. This commonality of chaperone action may reflect the simplicity of functional amyloid formation, driven largely by primary nucleation, as well as the ability of non-bacterial chaperones to deploy their proteostatic capacities across biological kingdoms.Unlike misfolding in neurodegenerative diseases, aggregation of functional amyloids involved in bacterial biofilm, e.g. CsgA (E. coli) and FapC (Pseudomonas), is carefully regulated. 相似文献
12.
Baldwin AJ Knowles TP Tartaglia GG Fitzpatrick AW Devlin GL Shammas SL Waudby CA Mossuto MF Meehan S Gras SL Christodoulou J Anthony-Cahill SJ Barker PD Vendruscolo M Dobson CM 《Journal of the American Chemical Society》2011,133(36):14160-14163
An experimental determination of the thermodynamic stabilities of a series of amyloid fibrils reveals that this structural form is likely to be the most stable one that protein molecules can adopt even under physiological conditions. This result challenges the conventional assumption that functional forms of proteins correspond to the global minima in their free energy surfaces and suggests that living systems are conformationally as well as chemically metastable. 相似文献
13.
The replica exchange molecular dynamics (REMD) approach is applied to four oligomeric peptide systems. At physiologically relevant temperature values REMD samples conformation space and aggregation transitions more efficiently than constant temperature molecular dynamics (CTMD). During the aggregation process the energetic and structural properties are essentially the same in REMD and CTMD. A condensation stage toward disordered aggregates precedes the beta-sheet formation. Two order parameters, borrowed from anisotropic fluid analysis, are used to monitor the aggregation process. The order parameters do not depend on the peptide sequence and length and therefore allow to compare the amyloidogenic propensity of different peptides 相似文献
14.
15.
Eunseo Oh Ha Young Lee Hak Jung Kim Yoo Jung Park Jeong Kon Seo Joon Seong Park Yoe-Sik Bae 《Experimental & molecular medicine》2015,47(11):e194
When mouse bone marrow-derived macrophages were stimulated with serum amyloid A (SAA), which is a major acute-phase protein, there was strong inhibition of osteoclast formation induced by the receptor activator of nuclear factor kappaB ligand. SAA not only markedly blocked the expression of several osteoclast-associated genes (TNF receptor-associated factor 6 and osteoclast-associated receptor) but also strongly induced the expression of negative regulators (MafB and interferon regulatory factor 8). Moreover, SAA decreased c-fms expression on the cell surface via shedding of the c-fms extracellular domain. SAA also restrained the fusion of osteoclast precursors by blocking intracellular ATP release. This inhibitory response of SAA is not mediated by the well-known SAA receptors (formyl peptide receptor 2, Toll-like receptor 2 (TLR2) or TLR4). These findings provide insight into a novel inhibitory role of SAA in osteoclastogenesis and suggest that SAA is an important endogenous modulator that regulates bone homeostasis. 相似文献
16.
17.
Tessa Sinnige 《Chemical science》2022,13(24):7080
Fibrillar protein aggregation is a hallmark of a variety of human diseases. Examples include the deposition of amyloid-β and tau in Alzheimer''s disease, and that of α-synuclein in Parkinson''s disease. The molecular mechanisms by which soluble proteins form amyloid fibrils have been extensively studied in the test tube. These investigations have revealed the microscopic steps underlying amyloid formation, and the role of factors such as chaperones that modulate these processes. This perspective explores the question to what extent the mechanisms of amyloid formation elucidated in vitro apply to human disease. The answer is not yet clear, and may differ depending on the protein and the associated disease. Nevertheless, there are striking qualitative similarities between the aggregation behaviour of proteins in vitro and the development of the related diseases. Limited quantitative data obtained in model organisms such as Caenorhabditis elegans support the notion that aggregation mechanisms in vivo can be interpreted using the same biophysical principles established in vitro. These results may however be biased by the high overexpression levels typically used in animal models of protein aggregation diseases. Molecular chaperones have been found to suppress protein aggregation in animal models, but their mechanisms of action have not yet been quantitatively analysed. Several mechanisms are proposed by which the decline of protein quality control with organismal age, but also the intrinsic nature of the aggregation process may contribute to the kinetics of protein aggregation observed in human disease.The molecular mechanisms of amyloid formation have been studied extensively in test tube reactions. This perspective article addresses the question to what extent these mechanisms apply to the complex situation in living cells and organisms. 相似文献
18.
Valerij S. Gurin 《Macromolecular Symposia》1998,136(1):13-16
Ultrafine lead sulfide clusters are produced by the reaction of long-chain thiols with lead ions in non-aqueous medium, and according to X-ray diffraction (XRD) data reveal the different steps of he bulk-like rocksalt lattice growth. XRD pattern is simulated by the Debye formula for four model clusters (27, 75, 125, 729 atoms) and the correspondence of model and experimental clusters is shown that allows to estimate their size. Ab initio MOLCAO calculations result in energetical parameters and charge distribution for the clusters with 27 atoms. The value of energy gap indicates the true tendency of variation for the clusters of different size but left yet higher than maxima in the optical absorption at the fixed steps. 相似文献
19.
The Replica Exchange Statistical Temperature Molecular Dynamics algorithm is used to study the equilibrium properties of a peptide monomer and dimer and the thermodynamics of peptide dimer formation. The simulation data are analyzed by the Statistical Temperature Weighted Histogram Analysis Method. Each 10-residue peptide is represented by a coarse-grained model with hydrophobic side chains and has an α-helix as its minimum energy configuration. It is shown that the configurational behavior of the dimer can be divided into four regions as the temperature increases: two folded peptides; one folded and one unfolded peptide; two unfolded peptides; and two spatially separated peptides. Two important phenomena are discussed: in the dimer, one peptide unfolds at a lower temperature than the isolated monomer and the other peptide unfolds at a higher temperature than the isolated monomer. In addition, in the temperature region where one peptide is folded and the other unfolded, the unfolded peptide adopts an extended structure that minimizes the overall surface area of the aggregate. It is suggested that combination of destabilization due to aggregation and the resulting extended configuration of the destabilized peptide could have implications for nucleating β-sheet structures and the ultimate formation of fibrils. 相似文献
20.
Binolfi A Rodriguez EE Valensin D D'Amelio N Ippoliti E Obal G Duran R Magistrato A Pritsch O Zweckstetter M Valensin G Carloni P Quintanar L Griesinger C Fernández CO 《Inorganic chemistry》2010,49(22):10668-10679
The aggregation of alpha-synuclein (AS) is a critical step in the etiology of Parkinson's disease (PD). A central, unresolved question in the pathophysiology of PD relates to the role of AS-metal interactions in amyloid fibril formation and neurodegeneration. Our previous works established a hierarchy in alpha-synuclein-metal ion interactions, where Cu(II) binds specifically to the protein and triggers its aggregation under conditions that might be relevant for the development of PD. Two independent, non-interacting copper-binding sites were identified at the N-terminal region of AS, with significant difference in their affinities for the metal ion. In this work we have solved unknown details related to the structural binding specificity and aggregation enhancement mediated by Cu(II). The high-resolution structural characterization of the highest affinity N-terminus AS-Cu(II) complex is reported here. Through the measurement of AS aggregation kinetics we proved conclusively that the copper-enhanced AS amyloid formation is a direct consequence of the formation of the AS-Cu(II) complex at the highest affinity binding site. The kinetic behavior was not influenced by the His residue at position 50, arguing against an active role for this residue in the structural and biological events involved in the mechanism of copper-mediated AS aggregation. These new findings are central to elucidate the mechanism through which the metal ion participates in the fibrillization of AS and represent relevant progress in the understanding of the bioinorganic chemistry of PD. 相似文献