首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
王年华  李明  张来平 《力学学报》2018,50(3):527-537
非结构网格二阶有限体积离散方法广泛应用于计算流体力学工程实践中,研究非结构网格二阶精度有限体积离散方法的计算精度具有现实意义. 计算精度主要受到网格和计算方法的影响,本文从单元梯度重构方法、黏性通量中的界面梯度计算方法两个方面考察黏性流动模拟精度的影响因素. 首先从理论上分析了黏性通量离散中的“奇偶失联”问题,并通过基于标量扩散方程的制造解方法验证了“奇偶失联”导致的精度下降现象,进一步通过引入差分修正项消除了“奇偶失联”并提高了扩散方程计算精度;其次,在不同类型、不同质量的网格上进行基于扩散方程的制造解精度测试,考察单元梯度重构方法、界面梯度计算方法对扩散方程计算精度的影响,结果显示,单元梯度重构精度和界面梯度计算方法均对扩散方程计算精度起重要作用;最后对三个黏性流动算例(二维层流平板、二维湍流平板和二维翼型近尾迹流动)进行网格收敛性研究,初步验证了本文的结论,得到了计算精度和网格收敛性均较好的黏性通量计算格式.   相似文献   

2.
Ackerer  Ph.  Younes  A.  Mose  R. 《Transport in Porous Media》1999,35(3):345-373
A new numerical model for the resolution of density coupled flow and transport in porous media is presented. The model is based on the mixed hybrid finite elements (MHFE) and discontinuous finite elements (DFE) methods. MHFE is used to solve the flow equation and the dispersive part of the transport equation. This method is more accurate in the calculation of velocities and ensures continuity of fluxes from one element to the adjacent one. DFE is used to solve the convective part of the transport equation. Combined with a slope limiting procedure, it avoids numerical instabilities and creates a very limited numerical dispersion, even for high grid Peclet number.Flow and transport equations are coupled by a standard iterative scheme. Residual based criterion is used to stop the iterations. Simulations of an unstable equilibrium show the effects of the criteria used to stop the iterations and the stopping criterion in the solver. The effects are more important for finer grids than for coarser grids.The numerical model is verified by the simulation of standard benchmarks: the Henry and the Elder test cases. A good agreement is found between the revised semianalytical Henry solution and the numerical solution. The Elder test case was also studied. The simulations were similar to those presented in previous works but with significantly less unknowns (i.e. coarser grids). These results show the efficiency of the used numerical schemes.  相似文献   

3.
This paper presents the development of the three- dimensional prolonged adaptive finite element equation solver for the Navier–Stokes equations. The finite element used is the tetrahedron with quadratic approximation of the velocities and linear approximation of the pressure. The equation system is formulated in the basic variables. The grid is adapted to the solution by the element Reynolds number. An element in the grid is refined when the Reynolds number of the element exceeds a preset limit. The global Reynolds number in the investigation is increased by scaling the solution for a lower Reynolds number. The grid is refined according to the scaled solution and the prolonged solution for the lower Reynolds number constitutes the start vector for the higher Reynolds number. Since the Reynolds number is the ratio of convection to diffusion, the grid refinements act as linearization and symmetrization of the equation system. The linear equation system of the Newton formulation is solved by CGSTAB with coupled node fill-in preconditioner. The test problem considered is the three-dimensional driven cavity flow. © 1997 John Wiley & Sons, Ltd.  相似文献   

4.
IntroductionThefinitevolume (FV)methodusestheintegralformoftheconservationequationasitsstartingpointandcanutilizeconvenientlydiversifiedgrids(structuredandunstructuredgrids)andissuitableforverycomplexgeometry ,whicharewhyitispopularwithengineeringandhasbeenwidelyusedinagreatvarietyofcommercialsoftwareofcomputationalfluiddynamics.Relativetothefiniteelement (FE)methodandthefinitedifferential (FD)method ,thedisadvantageofFVmethodisthatitisnothigheraccuracy .FVmethodisofsecondlevelapproximatio…  相似文献   

5.
A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order equation is discretized with a space-time finite element method, continuous in space but discontinuous in time. Stability, existence, uniqueness and convergence of the approximate solutions are proved. Numerical results are presented to illustrate efficiency of the proposed method.  相似文献   

6.
A numerical model for the simulation of flow and transport of organic compounds undergoing bacterial oxygen- and nitrate-based respiration is presented. General assumptions regarding microbial population, bacteria metabolism and effects of oxygen, nitrogen and nutrient concentration on organic substrate rate of consumption are briefly described. The numerical solution techniques for solving both the flow and the transport are presented. The saturated flow equation is discretized using a high-order mixed finite element scheme, which provides a highly accurate estimation of the velocity field. The transport equation for a sorbing porous medium is approximated using a finite volume scheme enclosing an upwind TVD shock-capturing technique for capturing concentration-unsteady steep fronts. The performance and capabilities of the present approach in a bio-remediation context are assessed by considering a set of test problems. The reliability of the numerical results concerning solution accuracy and the computational efficiency in terms of cost and memory requirements are also estimated. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
对流扩散方程的摄动有限体积(PFV)方法及讨论   总被引:8,自引:2,他引:8  
高智  柏威 《力学学报》2004,36(1):88-93
在有限体积(FV)方法的重构近似中,引入数值摄动处理,即把界面数值通量摄动展开成网格间距的幂级数,并利用积分方程自身的性质求出幂级数的系数,同时获得高精度迎风和中心型摄动有限体积(PFV)格式.对标量输运方程给出积分近似为二阶、重构近似为二、三和四阶迎风和中心型PFV格式,这些PFV格式的结构形式及使用基点数与一阶迎风格式完全一致,迎风PFV格式满足对流有界准则;二阶和四阶中心PFV格式对网格Peclet数的任意值均为正型格式,比常用的二阶中心格式优越.用一维标量输运和方腔流动算例说明PFV格式的优良性能,并把PFV方法与性质相近的摄动有限差分(PFD)方法及相关的高精度方法作了对比分析.  相似文献   

8.
The mixed finite element (MFE) methods for a shallow water equation system consisting of water dynamics equations, silt transport equation, and the equation of bottom topography change were derived. A fully discrete MFE scheme for the discrete-time along characteristics is presented and error estimates are established. The existence and convergence of MFE solution of the discrete current velocity, elevation of the bottom topography, thickness of fluid column, and mass rate of sediment is demonstrated.  相似文献   

9.
IntroductionThoughatransport_diffusion (orLagrange_Galerkin)method ,whichisalsocalledachar_acteristicsmethod ,isanoldone[1]andhasbeenextensivelyappliedtodealingwithPDEswithdiffusiontermand/orconvection ,ithadnotbeenmixedthefiniteelementmethodstotreatsuccessfullytheconvergenceofnumericalsolutionfortheNavier_Stokesequationsuntiltheearly198 0s[2 ].Intheearly 1 990s,Berm挷dezetal.[3]appliedthismethodtodealingwiththeshallowwaterequationsonlyincludingthecurrentandthedepthofwaterandonlyderi…  相似文献   

10.
A three‐dimensional baroclinic numerical model has been developed to compute water levels and water particle velocity distributions in coastal waters. The numerical model consists of hydrodynamic, transport and turbulence model components. In the hydrodynamic model component, the Navier–Stokes equations are solved with the hydrostatic pressure distribution assumption and the Boussinesq approximation. The transport model component consists of the pollutant transport model and the water temperature and salinity transport models. In this component, the three‐dimensional convective diffusion equations are solved for each of the three quantities. In the turbulence model, a two‐equation k–ϵ formulation is solved to calculate the kinetic energy of the turbulence and its rate of dissipation, which provides the variable vertical turbulent eddy viscosity. Horizontal eddy viscosities can be simulated by the Smagorinsky algebraic sub grid scale turbulence model. The solution method is a composite finite difference–finite element method. In the horizontal plane, finite difference approximations, and in the vertical plane, finite element shape functions are used. The governing equations are solved implicitly in the Cartesian co‐ordinate system. The horizontal mesh sizes can be variable. To increase the vertical resolution, grid clustering can be applied. In the treatment of coastal land boundaries, the flooding and drying processes can be considered. The developed numerical model predictions are compared with the analytical solutions of the steady wind driven circulatory flow in a closed basin and of the uni‐nodal standing oscillation. Furthermore, model predictions are verified by the experiments performed on the wind driven turbulent flow of an homogeneous fluid and by the hydraulic model studies conducted on the forced flushing of marinas in enclosed seas. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
We develop a consistent discretization of conservative momentum and scalar transport for the numerical simulation of flow using a generalized moving curvilinear coordinate system. The formulation guarantees consistency between the discrete transport equation and the discrete mass conservation equation due to grid motion. This enables simulation of conservative transport using generalized curvilinear grids that move arbitrarily in three dimensions while maintaining the desired properties of the discrete transport equation on a stationary grid, such as constancy, conservation, and monotonicity. In addition to guaranteeing consistency for momentum and scalar transport, the formulation ensures geometric conservation and maintains the desired high‐order time accuracy of the discretization on a moving grid. Through numerical examples we show that, when the computation is carried out on a moving grid, consistency between the discretized scalar advection equation and the discretized equation for flow mass conservation due to grid motion is required in order to obtain stable and accurate results. We also demonstrate that significant errors can result when non‐consistent discretizations are employed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper the explicit jump immersed interface method (EJIIM) is applied to stationary Stokes flows. The boundary value problem in a general, non‐grid aligned domain is reduced by the EJIIM to a sequence of problems in a rectangular domain, where staggered grid‐based finite differences for velocity and pressure variables are used. Each of these subproblems is solved by the fast Stokes solver, consisting of the pressure equation (known also as conjugate gradient Uzawa) method and a fast Fourier transform‐based Poisson solver. This results in an effective algorithm with second‐order convergence for the velocity and first order for the pressure. In contrast to the earlier versions of the EJIIM, the Dirichlét boundary value problem is solved very efficiently also in the case when the computational domain is not simply connected. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
The unsteady incompressible Navier–Stokes equations are formulated in terms of vorticity and stream-function in generalized curvilinear orthogonal co-ordinates to facilitate analysis of flow configurations with general geometries. The numerical method developed solves the conservative form of the vorticity transport equation using the alternating direction implicit method, whereas the streamfunction equation is solved by direct block Gaussian elimination. The method is applied to a model problem of flow over a backstep in a doubly infinite channel, using clustered conformal co-ordinates. One-dimensional stretching functions, dependent on the Reynolds number and the asymptotic behaviour of the flow, are used to provide suitable grid distribution in the separation and reattachment regions, as well as in the inflow and outflow regions. The optimum grid distribution selected attempts to honour the multiple length scales of the separated flow model problem. The asymptotic behaviour of the finite differenced transport equation near infinity is examined and the numerical method is carefully developed so as to lead to spatially second-order-accurate wiggle-free solutions, i.e. with minimum dispersive error. Results have been obtained in the entire laminar range for the backstep channel and are in good agreement with the available experimental data for this flow problem, prior to the onset of three-dimensionality in the experiment.  相似文献   

14.
Theoretical and numerical formulations are presented for the conjugate problem involving incompressible flow and flow in a saturated porous medium. The major focus of the work is the development of a generally applicable finite element method for the simulation of both fixed interface and evolving porous interface problems. The available alternatives for coupling Darcy and non-Darcy models to the Navier-Stokes equations have been studied and evaluated in a mixed finite element framework. Questions regarding convergence of the finite element method for porous flow models have been addressed. Numerical experiments on simple flow geometries have revealed the shortcomings of both the Darcy and Brinkman models. Application of the more realistic models to practical, multidimensional, flow studies has also been demonstrated.  相似文献   

15.
An enhanced solution strategy based on the SIMPLER algorithm is presented for low-Peclet-number mass transport calculations with applications in low-pressure material processing. The accurate solution of highly diffusive flows requires boundary conditions that preserve specified chemical species mass fluxes. The implementation of such boundary conditions in the standard SIMPLER solution procedure leads to degraded convergence that scales with the Peclet number. Modifications to both the non-linear and linear parts of the solution algorithm remove the slow convergence problem. In particular, the linearized species transport equations must be implicitly coupled to the boundary condition equations and the combined system must be solved exactly at each non-linear iteration. The pressure correction boundary conditions are reformulated to ensure that continuity is preserved in each finite volume at each iteration. The boundary condition scaling problem is demonstrated with a simple linear model problem. The enhanced solution strategy is implemented in a baseline computer code that is used to solve the multicomponent Navier–Stokes equations on a generalized, multiple-block grid system. Accelerated convergence rates are demonstrated for several material-processing example problems. © 1997 John Wiley & Sons, Ltd.  相似文献   

16.
An initial-boundary value problem for shallow equation system consisting of water dynamics equations, silt transport equation, the equation of bottom topography change, and of some boundary and initial conditions is studied, the existence of its generalized solution and semidiscrete mixed finite element (MFE) solution was discussed, and the error estimates of the semidiscrete MFE solution was derived. The error estimates are optimal.  相似文献   

17.
IntroductionTheshallowwaterequationsareanimportantmathematicalmodelforavarietyofprobleminhydraulicengineering .Inrecentyears,therehasbeeninterestinthenumericalsolutionfortheshallowwaterequations.Thenumericalsimulationsfortheshallowwaterequationsystemcanbeappliedtomanypurposes .First,itcanserveasameansformodelingtidalfluctuationsforthosenterestedincapturingtidalenergyforcommercialpurposes.Secondly ,thesesimulationscanbeusedtocomputetidalrangesandsurgessuchashurricanesandtsunamiscausedbyextreme…  相似文献   

18.
采用复合叉树自适应笛卡尔网格和有限体积法求解三维Euler方程,在网格生成过程中,以模型几何外形、模型表面曲率为基础,构建了基于复合叉树的网格生成和加密方法。在流场计算过程中,又针对流场变化特征,建立了基于复合叉树的网格各向异性拆分模式,同时采用以中心差分为基础的Jameson有限体积法。通过对M6机翼在跨音速情况下的数值仿真,表明计算结果与风洞实验结果符合良好,同时也表明本算法具有高分辨率、节省机时,提高计算效率等特点。  相似文献   

19.
Oltean  C.  Buès  M. A. 《Transport in Porous Media》2001,44(2):219-246
A new formulation for the modeling of density coupled flow and transport in porous media is presented. This formulation is based on the development of the mass balance equation by using the conservative form. The system of equations obtained by coupling the flow and transport equations using a state equation is solved by a combination of the mixed hybrid finite element method (MHFEM) and the discontinuous finite element method (DFEM). The former is applied in order to solve the flow equation and the dispersive part of the transport equation, whilst the latter is used to solve the advective part of the transport equation. Although the advantages of the MHFEM are known (efficiency calculation of velocity field and continuity of fluxes from one element to an adjacent one), its application in a classical development form (volumetric fluxes as unknowns) leads to the non-conservative version of the mass balance equation. The associated matrix of the system of equations obtained by hybridization is positive definite but non-symmetrical. By using a new approach (mass fluxes as unknowns) the conservative form of the continuity equation is preserved and the associated matrix of the system of equations obtained by hybridization becomes symmetrical. When applied to Elder's problem involving a strong density contrast, this new approach, with a lower calculation cost, leads to similar or identical results to those found in the specialized literature. The comparison between the conservative and non-conservative formulations solved with the same MHFEM and DFEM combination emphasizes the rigor and the pertinence of this new approach. Furthermore, we show the existence of a limit refinement defining the stability of the numerical solution for Elder's problem.  相似文献   

20.
A non-adaptive method and a Lagrangian-Eulerian finite difference technique are used to analyse the dynamic response of liquid membrancs to imposed pressure variations. The non-adaptive method employs a fixed grid and upwind differences for the convection terms, whereas the Lagrangian-Eulerian technique uses operator splitting and decomposes the mixed convection-diffusion system of equations into a sequence of convection and diffusion operators. The convection operator is solved exactly by means of the method of characteristics, and its results are interpolated onto the fixed (Eulerian) grid used to solve the diffusion operator. It is shown that although the method of characteristics eliminates the numerical diffusion associated with upwinding the convection terms in a fixed Eulerian grid, the Lagrangian-Eulerian method may yield overshoots and undershoots near steep flow gradients or when rapid pressure gradients are imposed, owing to the interpolation of the results of the convection operator onto the fixed grid used to solve the diffusion operator. This interpolation should be monotonic and positivity-preserving and should satisfy conservation of mass and linear momentum. It is also shown that both the non-adaptive and Lagrangian-Eulerian finite difference methods produce almost identical (within 1%) results when liquid membranes are subjected to positive and negative step and ramp changes in the pressure coefficient. However, because of their non-adaptive character, these techniques require an estimate of the (unknown) length of the membrane and do not use all the grid points in the calculations. The liquid membrane dynamic response is also analysed as a function of the Froude number, convergence parameter and nozzle exit angle for positive and negative step and ramp changes in the pressure coefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号