首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
陈颖超  谢凯  盘毅  郑春满  王华林 《中国物理 B》2011,20(2):28201-028201
Nano-LiMn 2 O 4 cathode materials with nano-sized particles are synthesized via a citric acid assisted sol-gel route.The structure,the morphology and the electrochemical properties of the nano-LiMn 2 O 4 are investigated.Compared with the micro-sized LiMn 2 O 4,the nano-LiMn 2 O 4 possesses a high initial capacity (120 mAh/g) at a discharge rate of 0.2 C (29.6 mA/g).The nano-LiMn 2 O 4 also has a good high-rate discharge capability,retaining 91% of its capacity at a discharge rate of 10 C and 73% at a discharge rate of 40 C.In particular,the nano-LiMn 2 O 4 shows an excellent high-rate pulse discharge capability.The cut-off voltage at the end of 50-ms pulse discharge with a discharge rate of 80 C is above 3.40 V,and the voltage returns to over 4.10 V after the pulse discharge.These results show that the prepared nano-LiMn 2 O 4 could be a potential cathode material for the power sources with the capability to deliver very high-rate pulse currents.  相似文献   

2.
The dielectric barrier discharge characteristics in helium at atmospheric pressure are simulated based on a one-dimensional fluid model. Under some discharge conditions, the results show that one discharge pulse per half voltage cycle usually appears when the amplitude of external voltage is low, while a glow-like discharge occurs at high voltage. For the one discharge pulse per half voltage cycle, the maximum of electron density appears near the anode at the beginning of the discharge, which corresponds to a Townsend discharge mode. The maxima of the electron density and the intensity of electric field appear in the vicinity of the cathode when the discharge current increases to some extent, which indicates the formation of a cathode-fall region. Therefore, the discharge has a transition from the Townsend mode to the glow discharge mode during one discharge pulse, which is consistent with previous experimental results.  相似文献   

3.
Transition of Discharge Mode of a Local Hollow Cathode Discharge   总被引:1,自引:0,他引:1       下载免费PDF全文
The discharge characteristics of hollow cathode discharge in argon in a cylindrical cavity are investigated experi- mentally. The voltage-current (V - I) characteristics and the light emission are measured. It is found that the discharge plasma is localized inside the hollow cavity, with an extensive Faraday dark space between the cathode and the anode. The discharge develops from predischarge to abnormal glow discharge, the hollow cathode effect (HCE) and a hybrid mode as the discharge current increases. The onset of the HCE is found for the first time by the transition from abnormal glow discharge together with a significant decrease in the slope of the V - I curve which shows a positive differential resistivity. The voltage increases proportionally with the current when the HCE is reached.  相似文献   

4.
A large-gap uniform discharge is ignited by a coaxial dielectric barrier discharge and burns between a needle anode and a plate cathode under a low sustaining voltage by feeding with flowing argon. The basic aspects of the large-gap uniform discharge are investigated by optical and spectroscopic methods. From the discharge images, it can be found that this discharge has similar regions with glow discharge at low pressure except a plasma plume region. Light emission signals from the discharge indicate that the plasma column is invariant with time, while there are some stochastic pulses in the plasma plume region. The optical emission spectra scanning from 300 nm to 800 nm are used to calculate the excited electron temperature and vibrational temperature of the large-gap uniform discharge. It has been found that the excited electron temperature almost keeps constant and the vibrational temperature increases with increasing discharge current.Both of them decreases with increasing gas flow rate.  相似文献   

5.
As a new electrochemical power system,safety(especially thermal safety) of Na-ion batteries(NIBs) is the key towards large-scale industrialization and market application.Thus,research on the thermal stability of NIBs is helpful to evaluate the safety properties and to provide effective strategies to prevent the occurrence of battery safety failure.Thermal stability of the high-power 26650 cylindrical NIBs using Cu-based layered oxide cathode and hard carbon anode is studied.The high power NIBs can achieve fast charge and discharge at 5-10 C rate and maintain 80% capacity after 4729 cycles at 2C/2C rate,where the unit C denotes a measure of the rate at which a battery is charge-discharged relative to its maximum capacity.The results of accelerating rate calorimeter and differential scanning calorimetry(ARC-DSC) test results show that NIBs have a higher initial decomposition temperature(110℃) and a lower maximum thermal runaway temperature(350℃) than those of Li-ion batteries(LIBs),exhibiting a favorable thermal stability.It should be noted that the heat generation of cathode accounts for a large proportion of the total heat generation while the thermal stability of the anode determines the initial thermal runaway temperature,which is similar to LIBs.Finally,the whole temperature characteristics of the NIBs in the range of-60℃-1000℃ are summarized,which provide guidance for the safety design and applications of NIBs.  相似文献   

6.
张红艳  王德真  王晓钢 《中国物理》2007,16(4):1089-1096
The glow discharge in pure helium at atmospheric pressure, controlled by a dielectric barrier between coaxial electrodes, is investigated based on a one-dimensional self-consistent fluid model. By solving the continuity equations for electrons, ions, and excited atoms, with the current conservation equation and the electric field profile, the time evolution of the discharge current, gas voltage and the surface density of charged particles on the dielectric barrier are calculated. The simulation results show that the peak values of the discharge current, gas voltage and electric field in the first half period are asymmetric to the second half. When the current reaches its positive or negative maximum, the electric field profile, and the electron and ion densities represent similar properties to the typical glow discharge at low pressures. Obviously there exist a cathode fall, a negative glow region, and a positive column. Effects of the barrier position in between the two coaxial electrodes and the discharge gap width on discharge current characteristics are also analysed. The result indicates that, in the case when the dielectric covering the outer electrode only, the gas is punctured earlier during the former half period and later during the latter half period than other cases, also the current peak value is higher, and the difference of pulse width between the two half periods is more obvious. On reducing the gap width, the multiple current pulse discharge happens.  相似文献   

7.
In field emission under a non-dc voltage, a displacement current is inevitable due to charging the cathode–anode condenser. Under an often-used square voltage pulse, in which the voltage rises from zero to a certain value abruptly, the charging current in the circuit is very large at the rising and falling edges. This large charging current makes measurement of the actual emissive current from the cathode difficult, constitutes a threat to the components in the circuit and causes attenuation of the emissive current within the pulse. To alleviate these drawbacks, trapezoid voltage pulses, whose rising edges are extended dramatically in comparison with square voltage pulses, are employed to extract the field emission. Under a trapezoid voltage pulse, the charging current is clearly lowered as expected. Furthermore, the heat generated by the charging current under the trapezoid voltage pulse is much smaller than that under the square voltage pulse. Hence the emissive current does not show any attenuation within the pulse. Finally, the average emissive currents are found to decrease with the repetition frequency of the pulses.  相似文献   

8.
Well-dispersed SnO2 nanorods with diameter of 4-15 nm and length of 100-200 nm are synthesised through a hydrothermal route and their potential as anode materials in lithium-ion batteries is investigated. The observed initial discharge capacity is as high as 1778 mA·h/g, much higher than the theoretical value of the bulk SnO2 (1494 mA·h/g). During the following 15 cycles, the reversible capacity decreases from 929 to 576 mA·h/g with a fading rate of 3.5% per cycle. The fading mechanism is discussed. Serious capacity fading can be avoided by reducing the cycling voltages from 0.05-3.0 to 0.4-1.2 V. At the end, SnO2 nanorods with much smaller size are synthesized and their performance as anode materials is studied. The size effect on the electrochemical properties is briefly discussed.  相似文献   

9.
Ba_(0.8)Sr_(0.2)FeO_(3-δ)has been surface-modified by the lithium-ion conductor Li_(1.4)Al_(0.4)Ti_(1.6)(PO_4)_3via a facile mechanical fusion method. The annealing temperature during coating process shows a strong impact on the surface morphology and chemical composition of Li(Ni_(0.6 )Co_(0.2) Mn_(0.2))O2_. The 600-?C annealed material exhibits the best cyclic stability at high charging cut-off voltage of 4.5 V(versus Li~+/Li) with the capacity retention of 90.9% after 100 cycles, which is much higher than that of bare material(79%). Moreover, the rate capability and thermal stability are also improved by Li_(1.4)Al_(0.4)Ti_(1.6)(PO_4)_3coating. The enhanced performance can be attributed to the improved stability of interface between Ba_(0.8)Sr_(0.2)FeO_(3-δ)and electrolyte by Li_(1.4)Al_(0.4)Ti_(1.6)(PO_4)_3modification. The results of this work provide a possible method to design reliable cathode materials to achieve high energy density and long cycle life.  相似文献   

10.
The ~(60)Co-γ ray total ionizing dose radiation responses of 55-nm silicon-oxide-nitride-oxide-silicon(SONOS) memory cells in pulse mode(programmed/erased with pulse voltage) and dc mode(programmed/erased with direct voltage sweeping) are investigated. The threshold voltage and off-state current of memory cells before and after radiation are measured. The experimental results show that the memory cells in pulse mode have a better radiation-hard capability. The normalized memory window still remains at 60% for cells in dc mode and 76% for cells in pulse mode after 300 krad(Si) radiation. The charge loss process physical mechanisms of programmed SONOS devices during radiation are analyzed.  相似文献   

11.
We develop a compact and high-energy Nd:YAG slab laser system consisting of an oscillator and an amplifier for space applications. The oscillator is a diode-side-pumped electro-optically Q-switched slab laser with a cross-Porro resonator. The KD*P Pockels cell with a low driving voltage of 950 V is used to polarization output coupling. The amplifier is a Nd:YAG zigzag slab pumped at bounces. The maximum output pulse energy of 341 m3 with 13 ns pulse duration is obtained from the system at the repetition rate of 20 Hz and the beam quality factors are M2=3.1 and M2=3.5. The beam pointing stabilities of the laser system are 3.05μrad in the X-direction and 3.99 grad in the Y-direction, respectively.  相似文献   

12.
The lithium-ion battery has been widely used as an energy source. Charge rate, discharge rate, and operating tem- perature are very important factors for the capacity degradations of power batteries and battery packs. Firstly, in this paper we make use of an accelerated life test and a statistical analysis method to establish the capacity accelerated degradation model under three constant stress parameters according to the degradation data, which are charge rate, discharge rate, and operating temperature, and then we propose a capacity degradation model according to the current residual capacity of a Li-ion cell under dynamic stress parameters. Secondly, we analyze the charge and discharge process of a series power battery pack and interpret the correlation between the capacity degradations of the battery pack and its charge/discharge rate. According to this cycling condition, we establish a capacity degradation model of a series power battery pack under inconsistent capacity of cells, and analyze the degradation mechanism with capacity variance and operating temperature difference. The comparative analysis of test results shows that the inconsistent operating temperatures of cells in the series power battery pack are the main cause of its degradation; when the difference between inconsistent temperatures is narrowed by 5 ℃, the cycle life can be improved by more than 50%. Therefore, it effectively improves the cycle life of the series battery pack to reasonably assemble the batteries according to their capacities and to narrow the differences in operating temperature among cells.  相似文献   

13.
A boron-lined proportional counter (BLPC) with a count rate limit close to the multi-wire proportional counter was manufactured to measure the mixed field around reactors. After measurement with a standard Am-Be neutron source (activity: 100 mCi), the results show that the operating voltage of the BLPC is 800 V, the plateau length is 100 V and the slope is 13.2%/100 V. The width and rise time of the output pulse of the BLPC are 1.26 μs and 370 ns, respectively. When the BLPC works at a count rate of 1.0×105 count/s, the pulse pile-up probability of the BLPC is 3.6%. A clear peak can be seen in the pulse height spectrum of the BLPC. and the performances illustrate that a BLPC working in pulse mode can serve as a source range detector of reactors.  相似文献   

14.
The electric field in a surface discharge type ac-PDP cell with He or He/Xe(0.1%) mixture has been measured over a wide range of pressure (5-50 kPa) using laser induced fluorescence detection. The wall voltage was estimated from the measured electric field. The Stark manifolds of triplet atomic helium Rydberg state (2s^3S) with principal quantum numbers (n=8 and 9) have been used to measure the electric field, as the lifetime of 2s^3S is longer than the single atomic helium Rydberg state (2s^1S) in high pressure discharge. Comparison of the Stark manifolds between the n=9 and n=8 shows that the measurement accuracy of electric field can be increased by 10%. The maximum electric field strength during discharge and the wall voltage at the end of pulse decreases with the increase of pressure. The comparison of He and He/Xe(0.1%) discharge at 13 kPa showed that He/Xe gas mixture discharge can accumulate more wall charge on MgO surface and the electric field was somewhat higher than those of pure helium discharge during pulse off period under the same discharge conditions.  相似文献   

15.
Hilal Yucel Kurt 《中国物理 B》2014,23(1):15201-015201
The Townsend discharge mechanism has been explored in a planar microelectronic gas discharge device(MGDD) with different applied voltages U and interelectrode distance d under various pressures in air. The anode and the cathode of the MGDD are formed by a transparent SnO2 covered glass and a GaAs semiconductor, respectively. In the experiments, the discharge is found to be unstable just below the breakdown voltage Ub, whereas the discharge passes through a homogeneous stable Townsend mode beyond the breakdown voltage. The measurements are made by an electrical circuit and a CCD camera by recording the currents and light emission(LE) intensities. The intensity profiles, which are converted from the 3D light emission images along the semiconductor diameter, have been analysed for different system parameters. Different instantaneous conductivity σtregimes are found below and beyond the Townsend region. These regimes govern the current and spatio-temporal LE stabilities in the plasma system. It has been proven that the stable LE region increases up to 550 Torr as a function of pressure for small d. If the active area of the semiconductor becomes larger and the interlectrode distance d becomes smaller, the stable LE region stays nearly constant with pressure.  相似文献   

16.
We investigate SrBi2 Ta2 O9 (SBT) films prepared by the sol-gel spin method with different spin rates or different anneal conditions for the first layer of SBT, as promising ferroelectric layer materials applied to ferroelectric random access memory (FeRAM). All the specimens in this experiment have similar SBT crystal orientations of (115), (020), (220), and (135). The Pt/SBT/Pt capacitor with coating of 3000rpm spin rate has a perfect rectangle shape of hysteresis loops, remanent polarization of 7.571μC/cm^2 and coercive voltage of 0.816 V at 5 V voltage amplitude. These characteristics are better than those with coating of 3500rpm spin rate, which is attributed to the influence for thickness and grain size of the film from depressed spin rate. Slow-rate anneal in the furnace for the first layer of SBT can improve the crystallization processes and properties for SBT layers slightly, compared with rapid thermal annealing. The ion damage from etching for the top electrode can influence leakage current characteristics of the Pt/SBT/Pt capacitor at positive voltage bias.  相似文献   

17.
The injection and transport characteristics of electrons are enhanced by using sodium chloride (NaC1) as an n-type dopant doped into a 4, 7-diphnenyl-1, lO-phe-nanthroline (Bphen) electron-transporting layer, which improves the performance of organic light-emitting diodes (OLEDs). Meanwhile, a NaCl-doped Bphen layer can effectively influence electrical characteristics of the devices, and significantly improve the current and power efficiency. The turn-on voltage and the operation voltage of the optimal device are decreased drastically from 6.5 V and 10.8 V to 3.3 V and 5 V, respectively, compared with those of the reference device. The maximum current efficiency and power efficiency of the optimal device are 7.0 cd/A and 4.4 Im/W at the current density of 16.70 mA/cm~, which are about I. 7 and 4 times higher than those of the reference device, respectively. Moreover, the enhancement of the injection and transport ability for electrons is attributed not only to the reduced energy barrier between A1 cathode and Bphen, but also to the increased mobility of electrons by the doping effect of NaCl. Therefore, both the electron injection and transport ability are enhanced, which improve the carrier balance in OLEDs and lead to the better device efficiency.  相似文献   

18.
A microcalorimeter is studied for testing heat capacity of thin films. The microcalorimeter is a suspended membrane supported by six microbridges, which is fabricated by the front-side surface micromachining. Compared to the bulk micro-machined one, the microcalorimeter has excellent mechanical strength and precisely controlled pattern size as well as good thermal characteristics that are essential to a microcalorimeter. The heating rate of the microcalorimeter is up to 2 × 10^5Kis with 4.5mW heating power in vacuum, and the heat capacity of the corresponding empty microcalorimeter is about 23.4nJ/K at 30OK. By a pulse calorimetry, the heat capacity of A1 thin films with thickness of 40-1150nm are measured in the temperature range from 300K to 420K in vacuum. The mass of each sample is evaluated and the specific heat capacity is calculated. The results show that specific heat capacity of the 1150-nm A1 film agrees well with the data of bulk A1 reported in the literature. For the thinner films, enhanced heat capacity is observed.  相似文献   

19.
The continuous wavelength chemical oxygen-iodine laser can be turned into pulse operation mode in order to obtain high energy and high pulse power. We propose an approach to produce iodine atoms instantaneously by pulsed gas discharge with the assistance of spark pre-ionization to achieve the pulsed goal. The influence of spark pre-ionization on discharge homogeneity is discussed. Voltage-current characteristics are shown and discussed in existence of the pre-ionization capacitor and peaking capacitor. The spark pre-ionization and peaking capacitor are very helpful in obtaining a stable and homogeneous discharge. The lasing is achieved at the total pressure of 2.2-2.9 kPa and single pulse energy is up to 180 mJ, the corresponding specific output energy is 1.0 3/L.  相似文献   

20.
The characteristics of a nitrogen arc using a graphite cathode and a melting anode in a pilot-scale plasma furnace are investigated. The voltage is examined as a function of current and apparent plasma length. The voltage increases non-linearly with the increase of apparent plasma length, with the current fixed. The experimental data so obtained are compared with the predictions of the Bowman model for the electric arc, and with numerical simulations as well. The level of agreement between the experimental data at the melting anode and the numerical predictions confirms the suitability of the proposed the Bowman model. These characteristics are relevant to the engineering design and evaluation of a DC plasma furnace and reactor for the treatment of hazardous fly ash waste.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号