首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellular delivery of peptide nucleic acids and inhibition of human telomerase.   总被引:10,自引:0,他引:10  
BACKGROUND: Human telomerase has an essential RNA component and is an ideal target for developing rules correlating oligonucleotide chemistry with disruption of biological function. Similarly, peptide nucleic acids (PNAs), DNA analogs that bind complementary sequences with high affinity, are outstanding candidates for inducing phenotypic changes through hybridization. RESULTS: We identify PNAs directed to nontemplate regions of the telomerase RNA that can overcome RNA secondary structure and inhibit telomerase by intercepting the RNA component prior to holoenzyme assembly. Relative potencies of inhibition delineate putative structural domains. We describe a novel protocol for introducing PNAs into eukaryotic cells and report efficient inhibition of cellular telomerase by PNAs. CONCLUSIONS: PNAs directed to nontemplate regions are a new class of telomerase inhibitor and may contribute to the development of novel antiproliferative agents. The dependence of inhibition by nontemplate-directed PNAs on target sequence suggests that PNAs have great potential for mapping nucleic acid structure and predictably regulating biological processes. Our simple method for introducing PNAs into cells will not only be useful for probing the complex biology surrounding telomere length maintenance but can be broadly applied for controlling gene expression and functional genomics.  相似文献   

2.
Telomerase, the enzyme that replicates the ends of linear chromosomes, is implicated in cellular aging and in cancer. The molecular components that form the catalytic core of this ribonucleoprotein enzyme (a section of the active site with bound substrates is depicted) have recently been identified in multiple organisms, including humans. The stage is now set for chemists to develop telomerase inhibitors, which hold promise as cancer chemotherapeutic agents.  相似文献   

3.
Human telomerase is a polymerase enzyme that adds tandem repeats of DNA (TTAGGG) in the telomeric region to the ends of chromosomes. Since telomerase can be detected in immortalized, but not normal, somatic cells, it has been considered a selective target for cancer chemotherapy. Here, we describe a DNAzyme‐based probe to detect the presence of telomerase in cell lysates. Telomerase elongates the primer site on the probe. Subsequent addition of the PbII cofactor activates the DNAzyme, which cleaves the elongated fragment at the RNA site, releasing the probe for repetitive cycling and signal amplification. The cleaved fragment is detected by a reporter molecular beacon. Enzymatic amplification with rapid turnover allows detection of telomerase in the range of 0.1 to 1 μg cell lysate, with a fivefold increase in signal level for cancer cells over normal cells. This probe design can provide a simple, yet rapid and sensitive, measurement of telomerase activity.  相似文献   

4.
5.
The cellular delivery of oligonucleotides has been a major obstacle in the development of therapeutic antisense agents. PNAs (Peptide Nucleic Acid) are unique in providing a modular peptidic backbone that is amenable to structural and charge modulation. While cationic PNAs have been shown to be taken up by cells more efficiently than neutral PNAs, the generality of uptake across different nucleobase sequences has never been tested. Herein, we quantified the relative uptake of PNAs across a library of 10 000 sequences for two different PNA backbones (cationic and neutral) and identified sequences with high uptake and low uptake. We used the high uptake sequence as a bait for target identification, leading to the discovery that a protein, caprin-1, binds to PNA with backbone and sequence discrimination. We further showed that purified caprin-1 added to cell cultures enhanced the cellular uptake of PNA as well as DNA and RNA.  相似文献   

6.
7.
For site-specific discrimination of cytosine (C) and 5-methylcytosine (mC) in duplex DNA, we developed a new method using peptide nucleic acids (PNAs). The combination of a PNA-assisted DNA displacement complex and a fluorescein-labeled probe oligomer allowed the detection of mC at the defined sites in target DNA using a restriction enzyme. After treatment of the complex with a restriction enzyme, strong fluorescence emission was observed for the complex containing C at the target site, whereas the fluorescence intensity for the complex containing mC was extremely weak.  相似文献   

8.
To look for high energy density materials (HEDM), the relationships between the structures and the performances of polynitroadamantanes (PNAs) were studied. The assigned infrared spectra of PNAs obtained at the density functional theory (DFT) B3LYP/6-31G level were used to compute the thermodynamic properties on the basis of the principle of statistical thermodynamics. The thermodynamic properties are linearly related with the number of nitro groups as well as with the temperatures. Detonation properties of PNAs were evaluated by using the Kamlet-Jacobs equation based on the calculated densities and heats of formation for titled compounds, and it is found that only when the number of nitro groups of PNA is equal to or more than eight can it be possible for PNAs to be used as HEDMs. The relative stabilities of PNAs were studied by the pyrolysis mechanism using the UHF-PM3 method. The homolysis of the C-NO2 bond is predicted to be the initial step of thermal decomposition. The activation energies (Ea) for the homolysis decrease with the number of nitro groups being increased on the whole. The stability order of dinitroadamantane isomers derived from the interactions among nitro groups is consistent with what is determined by Ea. The relations between the Ea's and the electronic structure parameters were discussed. In combination with the stability, PNA (1,2,3,4,5,6,7,8,9,10-) is recommended as the target of HEDM with insensitivity.  相似文献   

9.
Aoki H  Tao H 《The Analyst》2005,130(11):1478-1482
Gene sensors based on peptide nucleic acid (PNA) probes were prepared and the relationship between sensor sensitivity and the duplex stability of the probe PNAs and target complementary DNAs was studied using five synthesized PNAs (10-, 15-, 17-, 20-, and 22-mers). It was found that the association constants for the probe PNA/target DNA pairs depend not only on the length but also on the base pair sequence, and that the trend in the sensor responses was the same as that in the association constants for the corresponding pairs. In addition, by using two kinds of probe PNAs with different lengths, it was demonstrated that fabrication of sensors based on probe PNAs with comparable association constants yielded similar response curves and sensor sensitivities.  相似文献   

10.
A novel platform for nucleic acid recognition that integrates the alpha-helix secondary structure of peptides with the codified base-pairing capability of nucleic acids is reported. The resulting alpha-helical peptide nucleic acids (alpha PNAs) are composed of a repeating tetrapeptidyl unit, aa(1)-aa(2)-aa(3)-Ser(B), where aa(1) through aa(3) represent generic ancillary amino acids and B = nucleobases linked to Ser via a methylene bridge. Effective syntheses of constituent Fmoc-protected nucleoamino acids (Fmoc-Ser(B)-OH, where B = thymine, cytosine, and uracil) are described along with a protocol for the solid-phase synthesis of 21mer alpha PNAs containing five such nucleobases. By varying the ancillary amino acids, two distinct classes of alpha PNAs were constructed, having a net charge of -1 or +6, respectively, at physiological pH. The modular nature of the alpha PNA platform was illustrated by the synthesis of symmetrical disulfide-bridged alpha PNA dimers containing 10 nucleobases. Hybridization of these alpha PNAs with ssDNA has been examined by thermal denaturation, gel electrophoresis, and circular dichroism (CD) and the data indicated that alpha PNA binds to ssDNA in a cooperative manner with high affinity and sequence specificity. In general, b2 alpha PNAs bind faster and more strongly with ssDNA than do the corresponding b1 alpha PNAs. Parallel alpha PNA-DNA complexes are more stable than their antiparallel counterparts. CD studies also revealed that the hybridization event involves the folding of both species into their helical conformations. Finally, NMR experiments provided conclusive evidence of Watson-Crick base pairing in alpha PNA-ssDNA hybrids.  相似文献   

11.
The number of telomeric repeats in telomeres correlates with the proliferative potential of eukaryotic cells. The lengthening of telomeres and telomerase activity are regulated in several ways. One of these mechanisms is based on the elongation of the 3′-chromasomal end of an additional nucleotide that is not a part of the telomeric repeat motif. This study presents an approach to testing for the presence of an additional nontelomeric nucleotide at the 3′-end of the G strand of chromosomes. The applicability of this method is demonstrated for thermotolerant yeast H. polymorpha. The possibility of modifying the method to test for the presence of an additional nucleotide at the 3′-end of the chromosomes of other organisms is discussed.  相似文献   

12.
[structures: see text] A serious drawback of peptide nucleic acids (PNAs) from an application perspective that has not been adequately dealt with is nondiscrimination of identical DNA and RNA sequences. An analysis of the available X-ray and NMR solution structures of PNA complexes with DNA and RNA suggested that it might be possible to rationally impart DNA/RNA duplex binding selectivity by tuning the dihedral angle beta of the flexible ethylenediamine part of the PNA backbone (II) via suitable chemical modifications. Cyclohexanyl PNAs (chPNAs) with beta approximately = 65 degrees were designed on the basis of this rationale. The chPNAs introduced remarkable differences in duplex stabilities among their DNA and RNA complexes, with melting temperatures (deltaTm(RNA-DNA) = +16-50 degrees C) depending on the number of modifications and the stereochemistry. This is a highly significant, exceptional binding selectivity of a mix sequence of PNA to RNA over the same DNA sequence as that seen to date. In contrast, cyclopentanyl PNAs (cpPNAs) with beta approximately = 25 degrees hybridize to DNA/RNA strongly without discrimination because of the ring puckering of the cyclopentane ring. The high affinity of chPNAs to bind to RNA without losing base specificity will have immediate implications in designing improved PNAs for therapeutic and diagnostic applications.  相似文献   

13.
Peptide nucleic acids (PNAs) are oligonucleotide mimics widely used as antisense, antigene molecules, and biotechnological tools. Recently, several microarrays and other biosensors based on PNAs have been developed. The construction of PNA molecular beacons or light-up probes for DNA detection requires the labelling of the PNA moiety. Labels are usually attached at the C or N terminal end by a flexible linker or in the middle of a PNA sequence, substituting one PNA base with an artificial base or by attaching fluorophores to a modified PNA backbone. The need to develop simple protocols to label PNAs encouraged us to design a new procedure for the synthesis of γ-mercaptomethyl-modified PNA. Here we propose a new strategy for the synthesis of modified PNAs, bearing amino acid side chains. The synthesis is straightforward and is an improvement to the procedures reported so far, as it uses stable intermediates and proceeds with better yields.  相似文献   

14.
DNA helix invasion by P-loop forming peptide nucleic acids (PNAs) is extremely sensitive to increased ionic strength as this stabilizes the DNA duplex. To address this, the DNA intercalator 9-aminoacridine was conjugated to helix invading PNAs, and the duplex DNA binding efficiency of such constructs was measured at different ionic strength conditions by electrophoretic mobility shift analysis. Remarkably, at physiogically relevant ionic strength (140 mM K+/10 mM Na+, 2 mM Mg2+), acridine conjugated PNAs showed 20-150-fold superior binding to a cognate sequence target as compared to the conventional PNAs. This enhancement occurred without compromising the sequence specificity of binding. Thus, simply conjugating the DNA intercalator 9-aminoacridine to PNA represents a major step toward the development of helix invading constructs for in vivo applications such as gene targeting.  相似文献   

15.
Peptide nucleic acids (PNAs) are non-natural nucleic acid mimics that bind to complementary DNA and RNA with high affinity and selectivity. PNA can bind to nucleic acids in a number of different ways. Currently, the formation of PNA-oligonucleotide duplex, triplex, and quadruplex structures have been reported. PNAs have been used in numerous biomedicial applications, but there are few strategies to predictably improve the binding properties of PNAs by backbone modification. We have been studying the benefits of incorporating (S,S)-trans-cyclopentane diamine units (tcyp) into the PNA backbone. In this Communication, we report the improvement in stability associated with tcyp incorporation into PNA-DNA duplexes, triplexes, and quadruplexes. The broad utility of this modification across multiple types of PNA structures is unique and should prove useful in the development of applications that rely on PNA.  相似文献   

16.
Lys-based ‘chiral box’ Peptide Nucleic Acids (PNAs with three adjacent 2D-Lys-based chiral monomers) have shown unsurpassed specificity in DNA recognition. In this Letter, the binding performances of arginine-based chiral PNAs were evaluated for PNAs containing in the middle part of the strand either a 2D,5L-Arg monomer or three adjacent 2D-; 2D,5L-; 5L-Arg monomers (‘Extended Chiral Box’), a combination never studied before. The binding performances of the PNAs were studied by evaluating the melting temperatures of fullmatch and mismatch PNA-DNA and PNA-RNA hybrids and by studying their structure by circular dichroism (CD). The data indicated that the arginine side chains inserted in the PNA structure are perfectly equivalent to lysine side chains as far as oligonucleotide recognition is concerned. The insertion of an ‘Extended Chiral Box’ into PNA differently influences the binding properties to DNA and RNA: the additional side chains had no observable effect on binding affinity and selectivity toward DNA, whereas, seemed to slightly disturb the binding affinity to RNA but at the same time highly enhancing the recognition selectivity.  相似文献   

17.
The astonishing discovery that peptide nucleic acids (PNAs, B=nucleobase), in spite of their drastic structural difference to natural DNA, are better nucleic acid mimetics than many other oligonucleotides has resulted in an explosion of research into this class of compounds. The synthesis, physical properties, and biological interactions of PNAs as well as their chimeras with DNA and RNA are summarized here.  相似文献   

18.
端粒酶是真核细胞维持端粒长度的关键逆转录酶,其生物活性的高低可以为多种癌症的临床诊断和预后治疗提供有价值的信息.本研究以人宫颈癌细胞(HeLa细胞)裂解液中的端粒酶为研究对象,通过借助杂交链式反应辅助多重信号放大策略,提出了一种新颖、灵敏的检测端粒酶电化学方法.首先将端粒酶的延伸引物自组装在金电极表面,当端粒酶存在时,端粒酶能够催化引物的延伸,产生与发卡环探针H1部分互补的序列,进而引发杂交链式反应,形成由两个发卡环探针(H1和H2)交替杂交而形成的DNA长链.由于H1和H2末端均修饰有生物素,加入链霉亲和素修饰辣根过氧化物酶后,辣根过氧化物酶被被连接到电极表面,催化邻苯二胺氧化生成2,3-二氨基吩嗪,产生显著的电化学信号.实验结果表明,本研究建立的端粒酶电化学检测方法高效、可行,线性范围宽,灵敏度高,可以检测每毫升10个HeLa细胞裂解液中的端粒酶.本方法具有较好的选择性,能有效区分端粒酶和对照蛋白.  相似文献   

19.
Telomerase Inhibitors: Telomerase is the enzyme responsible for maintaining telomere length and it has activity not observed in normal somatic cells. In contrast, high expression of telomerase is observed in around 85-90% of human tumour cells and therefore telomerase is regarded as a specific target for development of cancer chemotherapeutic agents. There are several types of inhibitor known. For example antisense oligodeoxynucleotides and related compounds which exhibit potent inhibition of telomerase in the picomolar range. In spite of this research there have been no clinical trials of inhibitors to date, and discovery of novel inhibitors will contribute to evaluation of telomerase inhibitors for cancer chemotherapy. Recent developments have highlighted new telomerase inhibitors based on the bisindole unit (i) (S. Sasaki et. al., Bioorg. Med. Chem. Lett., 11, (2001), 583).  相似文献   

20.
High-throughput analysis of telomerase by capillary electrophoresis   总被引:2,自引:0,他引:2  
The enzyme telomerase is expressed in (85-90)% of all human cancers, but not in normal, non-stem cell somatic tissues. Clinical assays for telomerase in easily obtained body fluids would have great utility as noninvasive, cost-effective methods for the early detection of cancer. The most commonly used method for the detection and quantification of telomerase enzyme activity is the polymerase chain reaction (PCR)-based assay known as the telomerase repeat amplification protocol or TRAP assay. Most of the TRAP assay systems use a slab-gel based electrophoresis system to size and quantify the PCR-amplified extension products. We are developing high-throughput capillary electrophoresis (CE) methods for the analysis of TRAP/PCR products. The TRAP assay was conducted on lysates of the human lung cancer cell line A-549 in reactions containing 5-100 cells. TRAP/PCR products were generated using a fluorescent 4,7,2'4'5'7',-hexachloro-6-carboxyfluorescein(HEX)-labeled TS primer and analyzed on the Applied Biosystems Model 310 CE system using POP4 polymer. After analysis with GeneScan and Genotyper software, the total peak areas of the TRAP ladder extension products were computed using Microsoft Excel. Results were compared with unlabeled TRAP/PCR products analyzed on the Bio-Rad BioFocus 3000 CE system using 6% high molecular weight polyvinylpyrrolidone (HMW PVP) polymer and SYBR Green I dye. Both CE systems were able to resolve the TRAP ladder products with high reproducibility and sensitivity (5-15 cells). With the appropriate robotic sample handling system, these CE methods would enable performing the telomerase TRAP assay with increased sensitivity, reproducibility and automation over slab-gel methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号