首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
2.
The transmission of a 3 cm wavelength microwave beam through regular plasma density structures is investigated. The structures have a spatial periodicity, d, comparable to the microwave wavelength. The measured attenuation at Bragg angle is consistent with theoretical estimates.  相似文献   

3.
In the present article we separate variables in the Dirac equation in the presence of a spatially periodic magnetic field. We reduce the problem to solving a coupled system of first order differential equations. We show that the solution recently reported by Sen Gupta [7] is not correct.  相似文献   

4.
5.
Properties of the complex Ginzburg-Landau equation with drift are studied focusing on the Benjamin-Feir stable regime. On a finite interval with Neumann boundary conditions the equation exhibits bistability between a spatially uniform time-periodic state and a variety of nonuniform states with complex time dependence. The origin of this behavior is identified and contrasted with the bistable behavior present with periodic boundary conditions and no drift.  相似文献   

6.
7.
A scheme for a two-mirror interferometer intended to detect macrodefects in spatially periodic structures is proposed. This scheme is shown to provide both double-beam interferograms and shear interferograms that visualize the behaviors of the function reflecting a macrodefect in the structure and of the derivative of this function.  相似文献   

8.
9.
10.
Weakly nonlinear spatially periodic patterns coupled to a Goldstone (zero) mode of the phase-field crystal model are investigated. Rotationally invariant equations for the dynamics of the amplitudes of a hexagonal pattern are derived first, which then allows us to determine stability regions for stripes and hexagons. There are parameter regimes in which all periodic patterns become unstable as a result of long-wavelength instabilities generated by the zero mode.  相似文献   

11.
We use Renormalization Group ideas to study stability of moving fronts in the Ginzburg-Landau equation in one spatial dimension. In particular, we prove stability of the real fronts under complex perturbations. This extends the results of Aronson and Weinberger to situations where the maximum principle is inapplicable and constitutes a step in proving the general marginal stability hypothesis for the Ginzburg-Landau equation.Supported by EC grant SC1-CT91-0695Supported by NSF grant DMS-8903041  相似文献   

12.
The structure and dynamics of vortex filaments that form the cores of scroll waves in three-dimensional oscillatory media described by the complex Ginzburg-Landau equation are investigated. The study focuses on the role that twist plays in determining the bifurcation structure in various regions of the (alpha,beta) parameter space of this equation. As the degree of twist increases, initially straight filaments first undergo a Hopf bifurcation to helical filaments; further increase in the twist leads to a secondary Hopf bifurcation that results in supercoiled helices. In addition, localized states composed of superhelical segments interspersed with helical segments are found. If the twist is zero, zigzag filaments are found in certain regions of the parameter space. In very large systems disordered states comprising zigzag and helical segments with positive and negative senses exist. The behavior of vortex filaments in different regions of the parameter space is explored in some detail. In particular, an instability for nonzero twist near the alpha=beta line suggests the existence of a nonsaturating state that reduces the stability domain of straight filaments. The results are obtained through extensive simulations of the complex Ginzburg-Landau equation on large domains for long times, in conjunction with simulations on equivalent two-dimensional reductions of this equation and analytical considerations based on topological concepts.  相似文献   

13.
Following the ideas of Howard and Kopell [9] a perturbation theory is developed for slowly varying fully nonlinear wavetrains (i.e. solutions which appear locally as travelling waves, but with frequencies and wavelengths which may vary widely on long length and time scales). This perturbation theory is applied to the Ginzburg-Landau equation. The motion and stability of slowly varying wavetrains is shown to be governed by a simple wave equation which can develop shocks corresponding to rapid changes in wavenumber. Numerical results supporting this theory are presented. A shock structure is proposed and numerically verified. These results together with a winding invariant valid in the limit of slow variation suggest that over a large range of parameters many initial conditions relax to uniform wavetrains. The evolution of a marginally diffusively stable wavetrain is also examined; it is argued that the evolution is governed by a perturbed Korteweg-de Vries equation.  相似文献   

14.
We study the nature of the instability of the homogeneous steady states of the subcritical real Ginzburg-Landau equation in the presence of group velocity. The shift of the absolute instability threshold of the trivial steady state, induced by the destabilizing cubic nonlinearities, is confirmed by the numerical analysis of the evolution of its perturbations. It is also shown that the dynamics of these perturbations is such that finite size effects may suppress the transition from convective to absolute instability. Finally, we analyze the instability of the subcritical middle branch of steady states, and show, analytically and numerically, that this branch may be convectively unstable for sufficiently high values of the group velocity. Received 17 December 1998  相似文献   

15.
Solutions of the general cubic complex Ginzburg-Landau equation comprising multiple spiral waves are considered. For parameters close to the vortex limit, and for a system of spiral waves with well-separated centres, laws of motion of the centres are found which vary depending on the order of magnitude of the separation of the centres. In particular, the direction of the interaction changes from along the line of centres to perpendicular to the line of centres as the separation increases, with the strength of the interaction algebraic at small separations and exponentially small at large separations. The corresponding asymptotic wavenumber and frequency are determined. These depend on the positions of the centres of the spirals, and so evolve slowly as the spirals move.  相似文献   

16.
We have studied noise-induced synchronization in a distributed autooscillatory system described by the Ginzburg-Landau equations, which occur in a regime of chaotic spatiotemporal oscillations. A new regime of synchronous behavior, called incomplete noise-induced synchronization (INIS), is revealed, which can arise only in spatially distributed systems. The mechanism leading to the development of INIS in a distributed medium under the action of a distributed source of noise is analytically described. Good coincidence of analytical and numerical results is demonstrated.  相似文献   

17.
Operation of a passively mode-locked fiber laser beyond the Ginzburg-Landau Equation (GLE) approximation is numerically investigated. It is found that even in the Maxwell-Bloch formalism stable solitary waves can still be obtained in the laser due to the cavity pulse peak clamping effect. We further show that the gain bandwidth plays a significant role in determining the detailed property of the formed solitary pulses.  相似文献   

18.
We report the results of systematic numerical analysis of collisions between two and three stable dissipative solitons in the two-dimensional (2D) complex Ginzburg-Landau equation (CGLE) with the cubic-quintic (CQ) combination of gain and loss terms. The equation may be realized as a model of a laser cavity which includes the spatial diffraction, together with the anomalous group-velocity dispersion (GVD) and spectral filtering acting in the temporal direction. Collisions between solitons are possible due to the Galilean invariance along the spatial axis. Outcomes of the collisions are identified by varying the GVD coefficient, β, and the collision “velocity” (actually, it is the spatial slope of the soliton’s trajectory). At small velocities, two or three in-phase solitons merge into a single standing one. At larger velocities, both in-phase soliton pairs and pairs of solitons with opposite signs suffer a transition into a delocalized chaotic state. At still larger velocities, all collisions become quasi-elastic. A new outcome is revealed by collisions between slow solitons with opposite signs: they self-trap into persistent wobbling dipoles, which are found in two modifications — horizontal at smaller β, and vertical if β is larger (the horizontal ones resemble “zigzag” bound states of two solitons known in the 1D CGL equation of the CQ type). Collisions between solitons with a finite mismatch between their trajectories are studied too.  相似文献   

19.
This paper first proves the existence of a unique mild solution to the stochastic derivative Ginzburg-Landau equation. The fixed point theorem for the corresponding truncated equation is used as the main tool. Since we restrict our study to the one-dimensional case, it is not necessary to introduce another Banach space and thus the estimates of the stochastic convolutions in the Banach space are avoided. Secondly, we also consider large deviations for the stochastic derivative Ginzburg-Landau equation perturbed by a small noise. Since the underlying space considered is Polish, using the weak convergence approach, we establish a large deviations principle by proving a Laplace principle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号