首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main goal of the article is to suggest a two-dimensional map that could play the role of a generalized model similar to the standard Chirikov–Taylor mapping, but appropriate for energy-conserving nonholonomic dynamics. In this connection, we consider a Chaplygin sleigh on a plane, supposing that the nonholonomic constraint switches periodically in such a way that it is located alternately at each of three legs supporting the sleigh. We assume that at the initiation of the constraint the respective element (“knife edge”) is directed along the local velocity vector and becomes instantly fixed relative to the sleigh till the next switch. Differential equations of the mathematical model are formulated and an analytical derivation of mapping for the state evolution on the switching period is provided. The dynamics take place with conservation of the mechanical energy, which plays the role of one of the parameters responsible for the type of the dynamic behavior. At the same time, the Liouville theorem does not hold, and the phase volume can undergo compression or expansion in certain state space domains. Numerical simulations reveal phenomena characteristic of nonholonomic systems with complex dynamics (like the rattleback or the Chaplygin top). In particular, on the energy surface attractors associated with regular sustained motions can occur, settling in domains of prevalent phase volume compression together with repellers in domains of the phase volume expansion. In addition, chaotic and quasi-periodic regimes take place similar to those observed in conservative nonlinear dynamics.  相似文献   

2.
This paper is concerned with the Chaplygin sleigh with time-varying mass distribution (parametric excitation). The focus is on the case where excitation is induced by a material point that executes periodic oscillations in a direction transverse to the plane of the knife edge of the sleigh. In this case, the problem reduces to investigating a reduced system of two first-order equations with periodic coefficients, which is similar to various nonlinear parametric oscillators. Depending on the parameters in the reduced system, one can observe different types of motion, including those accompanied by strange attractors leading to a chaotic (diffusion) trajectory of the sleigh on the plane. The problem of unbounded acceleration (an analog of Fermi acceleration) of the sleigh is examined in detail. It is shown that such an acceleration arises due to the position of the moving point relative to the line of action of the nonholonomic constraint and the center of mass of the platform. Various special cases of existence of tensor invariants are found.  相似文献   

3.
In this paper we investigate the dynamics of a system that is a generalization of the Chaplygin sleigh to the case of an inhomogeneous nonholonomic constraint. We perform an explicit integration and a sufficiently complete qualitative analysis of the dynamics.  相似文献   

4.
This paper is concerned with the motion of the Chaplygin sleigh on the surface of a circular cylinder. In the case of inertial motion, the problem reduces to the study of the dynamical system on a (two-dimensional) torus and to the classification of singular points. Particular cases in which the system admits an invariant measure are found.In the case of a balanced and dynamically symmetric Chaplygin sleigh moving in a gravitational field it is shown that on the average the system has no drift along the vertical.  相似文献   

5.

The theory of feedback integrators is extended to handle mechanical systems with nonholonomic constraints with or without symmetry, so as to produce numerical integrators that preserve the nonholonomic constraints as well as other conserved quantities. To extend the feedback integrators, we develop a suitable extension theory for nonholonomic systems and also a corresponding reduction theory for systems with symmetry. It is then applied to various nonholonomic systems such as the Suslov problem on \({\text {SO}}(3)\), the knife edge, the Chaplygin sleigh, the vertical rolling disk, the roller racer, the Heisenberg system, and the nonholonomic oscillator.

  相似文献   

6.

This paper introduces Hamel’s formalism for classical field theories with the goal of analyzing the dynamics of continuum mechanical systems with velocity constraints. The developed formalism is utilized to prove the existence and uniqueness of motions of an infinite-dimensional generalization of the Chaplygin sleigh, a canonical example of nonholonomic dynamics. The formalism is very flexible and, for mechanical field theories, includes the Eulerian and Lagrangian representations of continuum mechanics as special cases. It also provides a useful approach to analyzing symmetry reduction.

  相似文献   

7.
The classical question whether nonholonomic dynamics is realized as limit of friction forces was first posed by Carathéodory. It is known that, indeed, when friction forces are scaled to infinity, then nonholonomic dynamics is obtained as a singular limit.Our results are twofold. First, we formulate the problem in a differential geometric context. Using modern geometric singular perturbation theory in our proof, we then obtain a sharp statement on the convergence of solutions on infinite time intervals. Secondly, we set up an explicit scheme to approximate systems with large friction by a perturbation of the nonholonomic dynamics. The theory is illustrated in detail by studying analytically and numerically the Chaplygin sleigh as an example. This approximation scheme offers a reduction in dimension and has potential use in applications.  相似文献   

8.
This paper studies the construction of geometric integrators for nonholonomic systems. We develop a formalism for nonholonomic discrete Euler–Lagrange equations in a setting that permits to deduce geometric integrators for continuous nonholonomic systems (reduced or not). The formalism is given in terms of Lie groupoids, specifying a discrete Lagrangian and a constraint submanifold on it. Additionally, it is necessary to fix a vector subbundle of the Lie algebroid associated to the Lie groupoid. We also discuss the existence of nonholonomic evolution operators in terms of the discrete nonholonomic Legendre transformations and in terms of adequate decompositions of the prolongation of the Lie groupoid. The characterization of the reversibility of the evolution operator and the discrete nonholonomic momentum equation are also considered. Finally, we illustrate with several classical examples the wide range of application of the theory (the discrete nonholonomic constrained particle, the Suslov system, the Chaplygin sleigh, the Veselova system, the rolling ball on a rotating table and the two wheeled planar mobile robot). This work was partially supported by MEC (Spain) Grants MTM 2006-03322, MTM 2007-62478, MTM 2006-10531, project “Ingenio Mathematica” (i-MATH) No. CSD 2006-00032 (Consolider-Ingenio 2010) and S-0505/ESP/0158 of the CAM.  相似文献   

9.
An  Zhipeng  Gao  Shan  Shi  Donghua  Zenkov  Dmitry V. 《Journal of Nonlinear Science》2020,30(4):1381-1419

The paper introduces a mechanically inspired nonholonomic integrator for numerical simulation of the dynamics of a constrained geometrically exact beam that is a field-theoretic analogue of the Chaplygin sleigh. The integrator features an exact constraint preservation, an excellent numerical energy conservation throughout a large number of iterations, while avoiding the use of unnecessary Lagrange multipliers. Simulations of the dynamics of the constrained beam reveal typical for nonholonomic system’s behavior, such as motion reversals and locomotion generation.

  相似文献   

10.
We consider a class of dynamical systems on a compact Lie group G with a left-invariant metric and right-invariant nonholonomic constraints (so-called LR systems) and show that, under a generic condition on the constraints, such systems can be regarded as generalized Chaplygin systems on the principle bundle G \to Q = G/H, H being a Lie subgroup. In contrast to generic Chaplygin systems, the reductions of our LR systems onto the homogeneous space Q always possess an invariant measure. We study the case G = SO(n), when LR systems are ultidimensional generalizations of the Veselova problem of a nonholonomic rigid body motion which admit a reduction to systems with an invariant measure on the (co)tangent bundle of Stiefel varieties V(k, n) as the corresponding homogeneous spaces. For k = 1 and a special choice of the left-invariant metric on SO(n), we prove that after a time substitution the reduced system becomes an integrable Hamiltonian system describing a geodesic flow on the unit sphere Sn-1. This provides a first example of a nonholonomic system with more than two degrees of freedom for which the celebrated Chaplygin reducibility theorem is applicable for any dimension. In this case we also explicitly reconstruct the motion on the group SO(n).  相似文献   

11.

We introduce energy-preserving integrators for nonholonomic mechanical systems. We will see that the nonholonomic dynamics is completely determined by a triple \(({{\mathcal {D}}}^*, \varPi , \mathcal {H})\), where \({{\mathcal {D}}}^*\) is the dual of the vector bundle determined by the nonholonomic constraints, \(\varPi \) is an almost-Poisson bracket (the nonholonomic bracket) and \( \mathcal {H}: {{\mathcal {D}}}^*\rightarrow \mathbb {R}\) is a Hamiltonian function. For this triple, we can apply energy-preserving integrators, in particular, we show that discrete gradients can be used in the numerical integration of nonholonomic dynamics. By construction, we achieve preservation of the constraints and of the energy of the nonholonomic system. Moreover, to facilitate their applicability to complex systems which cannot be easily transformed into the aforementioned almost-Poisson form, we rewrite our integrators using just the initial information of the nonholonomic system. The derived procedures are tested on several examples: a chaotic quartic nonholonomic mechanical system, the Chaplygin sleigh system, the Suslov problem and a continuous gearbox driven by an asymmetric pendulum. Their performance is compared with other standard methods in nonholonomic dynamics, and their merits verified in practice.

  相似文献   

12.
13.
The Hamiltonian representation and integrability of the nonholonomic Suslov problem and its generalization suggested by S. A. Chaplygin are considered. This subject is important for understanding the qualitative features of the dynamics of this system, being in particular related to a nontrivial asymptotic behavior (i. e., to a certain scattering problem). A general approach based on studying a hierarchy in the dynamical behavior of nonholonomic systems is developed.  相似文献   

14.
The problem of the motion of a Chaplygin sleigh on horizontal and inclined surfaces is considered. The possibility of representing the equations of motion in Hamiltonian form and of integration using Liouville's theorem (with a redundant algebra of integrals) is investigated. The asymptotics for the rectilinear uniformly accelerated sliding of a sleigh along the line of steepest descent are determined in the case of an inclined plane. The zones in the plane of the initial conditions, corresponding to a different behaviour of the sleigh, are constructed using numerical calculations. The boundaries of these domains are of a complex fractal nature, which enables a conclusion to be drawn concerning the probable character from of the dynamic behaviour.  相似文献   

15.
We consider some questions connected with the Hamiltonian form of the two problems of nonholonomic mechanics: the Chaplygin ball problem and the Veselova problem. For these problems we find representations in the form of the generalized Chaplygin systems that can be integrated by the reducing multiplier method. We give a concrete algebraic form of the Poisson brackets which, together with an appropriate change of time, enable us to write down the equations of motion of the problems under study. Some generalization of these problems are considered and new ways of implementation of nonholonomic constraints are proposed. We list a series of nonholonomic systems possessing an invariant measure and sufficiently many first integrals for which the question about the Hamiltonian form remains open even after change of time. We prove a theorem on isomorphism of the dynamics of the Chaplygin ball and the motion of a body in a fluid in the Clebsch case.  相似文献   

16.
We study the regular and chaotic dynamics of two nonholonomic models of a Celtic stone. We show that in the first model (the so-called BM-model of a Celtic stone) the chaotic dynamics arises sharply, during a subcritical period doubling bifurcation of a stable limit cycle, and undergoes certain stages of development under the change of a parameter including the appearance of spiral (Shilnikov-like) strange attractors and mixed dynamics. For the second model, we prove (numerically) the existence of Lorenz-like attractors (we call them discrete Lorenz attractors) and trace both scenarios of development and break-down of these attractors.  相似文献   

17.
We prove the existence of weak solutions for a phase-field model with three coupled equations with unknown uniqueness, and state several dynamical systems depending on the regularity of the initial data. Then, the existence of families of global attractors (level-set depending) for the corresponding multi-valued semiflows is established, applying an energy method. Finally, using the regularizing effect of the problem, we prove that these attractors are in fact the same.  相似文献   

18.
We consider a Navier–Stokes–Voigt fluid model where the instantaneous kinematic viscosity has been completely replaced by a memory term incorporating hereditary effects, in presence of Ekman damping. Unlike the classical Navier–Stokes–Voigt system, the energy balance involves the spatial gradient of the past history of the velocity rather than providing an instantaneous control on the high modes. In spite of this difficulty, we show that our system is dissipative in the dynamical systems sense and even possesses regular global and exponential attractors of finite fractal dimension. Such features of asymptotic well-posedness in absence of instantaneous high modes dissipation appear to be unique within the realm of dynamical systems arising from fluid models.  相似文献   

19.
In this paper we study Chaplygin’s Reducibility Theorem and extend its applicability to nonholonomic systems with symmetry described by the Hamilton-Poincaré-d’Alembert equations in arbitrary degrees of freedom. As special cases we extract the extension of the Theorem to nonholonomic Chaplygin systems with nonabelian symmetry groups as well as Euler-Poincaré-Suslov systems in arbitrary degrees of freedom. In the latter case, we also extend the Hamiltonization Theorem to nonholonomic systems which do not possess an invariant measure. Lastly, we extend previous work on conditionally variational systems using the results above. We illustrate the results through various examples of well-known nonholonomic systems.  相似文献   

20.
We study numerically the dynamics of the rattleback, a rigid body with a convex surface on a rough horizontal plane, in dependence on the parameters, applying methods used earlier for treatment of dissipative dynamical systems, and adapted here for the nonholonomic model. Charts of dynamical regimes on the parameter plane of the total mechanical energy and the angle between the geometric and dynamic principal axes of the rigid body are presented. Characteristic structures in the parameter space, previously observed only for dissipative systems, are revealed. A method for calculating the full spectrum of Lyapunov exponents is developed and implemented. Analysis of the Lyapunov exponents of the nonholonomic model reveals two classes of chaotic regimes. For the model reduced to a 3D map, the first one corresponds to a strange attractor with one positive and two negative Lyapunov exponents, and the second to the chaotic dynamics of quasi-conservative type, when positive and negative Lyapunov exponents are close in magnitude, and the remaining exponent is close to zero. The transition to chaos through a sequence of period-doubling bifurcations relating to the Feigenbaum universality class is illustrated. Several examples of strange attractors are considered in detail. In particular, phase portraits as well as the Lyapunov exponents, the Fourier spectra, and fractal dimensions are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号