首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Close to the orifice the film of liquid flowing from the nozzle of a pressure jet atomizer is approximately cylindrical in shape. Usually it also decays close to the nozzle and for a preliminary theoretical study it is convenient to formulate the problem of the stability of a cylindrical film of liquid moving in a stationary gaseous medium.  相似文献   

2.
The results of a numerical analysis of a supersonic underexpanded jet impinging on an inclined flat plate are presented. The effects of the angle between the plate and the jet symmetry axis, the distance from the nozzle exit section, the exit Mach number, and the off-design conditions on the distribution of the gasdynamic parameters in the jet flowfield and on the plate surface are demonstrated. Specific features of the compressed layer and obstacle surface flows are revealed. The three-dimensional flow is simulated using the large particle method on the basis of the nonstationary Euler equations written in the cylindrical coordinate system. The calculated results are compared with experimental data. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 31–35, January–February, 1997.  相似文献   

3.
An experimental investigation has been completed to study several methods of avoiding the jet screech phenomenon due to air jet impingement on solid boundaries. Measurements were completed in the Mach number region of M=0.5 using a 25 mm diameter nozzle with the air jet impinging on flat, concave and convex boundaries. Sound pressure levels were recorded in the plane of the nozzle outlet at a distance of 1.46 m from the jet axis. Hot wire studies and the stagnation pressure at the impingement zone of the jet were also recorded.With the air jet impinging on the flat board normal to its surface a maximum sound pressure occurred at a spacing of approximately two nozzle diameters producing a distinct screech at a sound level of 20 dB above that of the free jet. Three methods of preventing this screech were studied. First, by inserting disturbances into the shear layer at the nozzle exit; second, by changing the geometry of the boundary shape to improve the jet stability in the impingement region; and third, by introducing disturbances at the stagnation region which had the effect of displacing the distinct screech to another frequency range.  相似文献   

4.
This paper describes an experimental study of a liquid jet leaving a cylindrical nozzle under gravity. A special optical system was used to study the spatial and temporal interface variations between two liquids. A photoelectric cell was used to measure the light intensity and to obtain the physical parameters of the jet. Spatial analysis revealed a continual contraction of the jet from the nozzle exit to the break-up zone. Fluctuations of the interface over time are characteristic of a random signal with a narrow bandpass. The Fourier transform of the different samples shows a bandpass of finite width centered around a characteristic frequency. The distribution of interface amplitude fluctuations was symmetrical to the average diameter, except in the zone in which the jet breaks up. By systematically tracing the main parameters of the jet diameter, we observed three zones with different jet behavior. The characteristic frequency of interface fluctuations increases as a linear function of the distance from the nozzle. The amplitude of interface fluctuations was an exponential function of the distance at which jet diameter fluctuations were measured.  相似文献   

5.
This study examines the effect of fully developed turbulent flow at the exit of nozzle/injector on the trajectory and column breakup location of a liquid jet injected transverly into a gaseous crossflow. Liquid jet trajectory and column breakup for different nozzle geometries at different velocities of liquid jet and crossflow are analytically and experimentally Investigated. Shadowgraph imaging technique is used to determine the jet trajectory and breakup location of a transverse liquid jet in a uniform airflow. Particle image velocimetry (PIV) is used to measure the near-field velocity profile of a liquid jet discgarged into a quiescent atmosphere. The experimental results show a higher penetration and breakup height for the liquid jet ensuing from a nozzle with a smaller length to diameter ratio. This is due to the surface irregularities of the liquid column of a turbulent jet, which breaks up and consequently follows the cross airflow sooner. In order to capture the effect of turbulence, the analytical trajectory correlation developed in our previous studies is modified to account for the discharge coefficient of a nozzle. The discharge coefficient is estimated indirectly by comparing the liquid column trajectory predicted by the modified analytical correlation with that determined experimentally. The indirectly determined discharge coefficient is then used in the analytical correlation for predicting the breakup height of a transverse liquid jet. The results predicted using this approach are in good agreement with the experimental data of the present study at standard temperature and pressure (STP) test conditions.  相似文献   

6.
A nonlinear theory is constructed for a thin jet of nonviscous, incompressible, weightless fluid flowing from a nozzle onto the surface of an immobile heavy liquid. The theory is asymptotically (over jet thickness) more accurate than that presented in [1]. Forms of the flow are studied as functions of nozzle, jet, and heavy liquid parameters.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 20–28, November–December, 1976.  相似文献   

7.
An experimental investigation is performed to study the effect of jet to plate spacing and low Reynolds number on the local heat transfer distribution to normally impinging submerged circular air jet on a smooth and flat surface. A single jet from a straight circular nozzle of length-to-diameter ratio (l/d) of 83 is tested. Reynolds number based on nozzle exit condition is varied between 500 and 8,000 and jet-to-plate spacing between 0.5 and 8 nozzle diameters. The local heat transfer characteristics are obtained using thermal images from infrared thermal imaging technique. It was observed that at lower Reynolds numbers, the effect of jet to plate distances covered during the study on the stagnation point Nusselt numbers is minimal. At all jet to plate distances, the stagnation point Nusselt numbers decrease monotonically with the maximum occurring at a z/d of 0.5 as opposed to the stagnation point Nusselt numbers at high Reynolds numbers which occur around a z/d of 6.  相似文献   

8.
小宽厚比喷嘴喷射出的平面水膜进入静止空气中,在不同气流流速环境下对水膜碎裂过程进行了实验研究。结果表明,静止空气中的水膜表面波呈现对称波形,射流的碎裂长度随雷诺数的增大而增大,喷射压力对射流碎裂长度没有直接影响。空气助力作用使平面射流表面波的上、下气液交界面出现相位差。水膜的碎裂长度随空气助力气流速度的增大而减小;空气助力对于低雷诺数水膜射流具有很强的促进碎裂作用,所以会极大地改善低雷诺数射流的一次雾化效果。随着水流雷诺数的提高,空气助力作用对水膜碎裂长度的影响大为减弱;即使在高速助力空气的作用下,水膜仍长期保持较稳定的射流流态,没有出现明显的水膜撕裂现象。说明在小宽厚比喷嘴的瑞利(Rayleigh)模式射流中,高雷诺数射流是水膜的稳定因素。与气液流速比、气流马赫数等无量纲参数相比,液体喷射的雷诺数是射流碎裂的主要影响因素。  相似文献   

9.
The design of a pneumatic droplet generator to produce small (~0.2 mm diameter) water droplets on demand is described. It consists of a cylindrical, liquid-filled chamber with a small nozzle set into its bottom surface, connected to a gas cylinder through a solenoid valve. Rapidly opening and closing the valve sends a pressure pulse to the liquid, ejecting a single droplet through the nozzle. Gas in the chamber escapes through a vent hole so that the pressure drops rapidly and more droplets do not emerge. We photographed droplets as they emerged from the nozzle, and recorded pressure fluctuations in the chamber. We determined the duration of the pressure pulse required to generate a single drop; longer pulses produced satellite drops. The length of the water jet when its tip detached and the diameter of the droplet that formed could be predicted using results from linear stability analysis. The peak pressure in the cavity could be increased by raising the supply pressure, increasing the width of the pressure pulse, or by reducing the size of the pressure relief vent.  相似文献   

10.
The main objective of this research is to study analytically and experimentally the liquid sheet breakup of a flat fan jet nozzle resulting from pressure-swirling. In this study the effects of nozzle shape and spray pressure on the liquid sheet characteristics were investigated for four nozzles with different exit widths (1.0, 1.5, 2.0 and 2.5 mm). The length of liquid sheet breakup, liquid sheet velocity and the size of formed droplets were measured by a digital high speed camera. The breakup characteristics of plane liquid sheets in atmosphere are analytically investigated by means of linear and nonlinear hydrodynamic instability analyses. The liquid sheet breakup process was studied for initial sinuous and also varicose modes of disturbance. The results presented the effect of the nozzle width and the spray pressure on the breakup length and also on the size of the formed droplets. Comparing the experimental results with the theoretical ones for all the four types of nozzles, gives a good agreement with difference ranges from 4% to 12%. Also, the comparison between the obtained results and the results due to others shows a good agreement with difference ranged from 5% to 16%. Empirical correlations have been deduced describing the relation between the liquid sheet breakup characteristics and affecting parameters; liquid sheet Reynolds number, Weber number and the nozzle width.  相似文献   

11.
The propagation of an underexpanded sonic jet over a flat end face has been experimentally investigated. As distinct from previous studies, the object of investigation is not a free jet, but a jet flowing from a nozzle along a horizontal surface. The total separation of the jet from the surface and its attachment to the end wall are related to the propagation characteristics of underexpanded wall jets. The effect of the total pressure in the jet and the height of the step on the separation of the jet and its attachment to the wall and, moreover, on the principal characteristics of the flow — the pressure in the base region, the extent of the circulation zone, the jet trajectory — is examined. The associated hysteresis effects are studied.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 61–66, July–August, 1991.  相似文献   

12.
 An image-processing method is proposed to obtain the distribution of the removal efficiency of particles on a plate by an air jet. This method can be used to measure particle removal from a flat surface by processing the image of the reflected light from the surface. Factors affecting the particle removal efficiency such as air pressure, distance between the nozzle and the impinging surface and the impinging angle are discussed. Optimal conditions are determined to obtain the most effective particle removal by the air jet. Received: 10 April 2001 / Accepted: 2 August 2001  相似文献   

13.
A pneumatic droplet-on-demand generator   总被引:1,自引:0,他引:1  
The design of a pneumatic droplet generator to produce small (~0.2 mm diameter) water droplets on demand is described. It consists of a cylindrical, liquid-filled chamber with a small nozzle set into its bottom surface, connected to a gas cylinder through a solenoid valve. Rapidly opening and closing the valve sends a pressure pulse to the liquid, ejecting a single droplet through the nozzle. Gas in the chamber escapes through a vent hole so that the pressure drops rapidly and more droplets do not emerge. We photographed droplets as they emerged from the nozzle, and recorded pressure fluctuations in the chamber. We determined the duration of the pressure pulse required to generate a single drop; longer pulses produced satellite drops. The length of the water jet when its tip detached and the diameter of the droplet that formed could be predicted using results from linear stability analysis. The peak pressure in the cavity could be increased by raising the supply pressure, increasing the width of the pressure pulse, or by reducing the size of the pressure relief vent.  相似文献   

14.
The heat transfer characteristics of a planar free water jet normally or obliquely impinging onto a flat substrate were investigated experimentally. The planar jet issued from a rectangular slot nozzle with a cross section of 1.62 mm × 40 mm. The mean velocity at the nozzle exit ranged from 1.5 to 6.1 m s−1. The corresponding Reynolds number range based on the nozzle gap and the mean velocity was 2200–8800. Constant heat-flux conditions were employed at the solid surface. Various impingement angles between the vertical planar jet and the inclined solid surface were investigated: 90° (normal collision), 70°, 60°, and 50°. In the case of normal collisions, the Nusselt number is high at the impingement line, and decreases with departures from it. The stagnation Nusselt numbers were compared to the predictions of several correlations proposed by other researchers. In oblique collisions, the profiles of the local Nusselt numbers are asymmetric. The locations of the peak Nusselt numbers do not coincide with the geometric center of the planar jet on the surface.  相似文献   

15.
The wear of steel plates under the impact of a hydroabrasive jet was studied experimentally by varying the distance between the sample surface and the nozzle, the angle of impingement of the jet on the plate, and the abrasive concentrations in water and in the ambient medium (jet in air, submerged jet). The results are compared with available data on the structure of the jet and jet flow around an obstacle. It is shown that the addition of abrasive particles to the liquid can be used to study the liquid jet flow around an obstacle because the form of surface wear allows one to determine the region of impact of the jet core, the deceleration region, and the near-wall flow region before flow separation.  相似文献   

16.
Using the detailed numerical simulation data of primary atomization, the liquid surface instability development that leads to atomization is characterized. The numerical results are compared with a theoretical analysis of liquid–gas layer for a parameter range close to high-speed Diesel jet fuel injection. For intermittent and short-duration Diesel injection, the aerodynamic surface interaction and transient head formation play an important role. The present numerical setting excludes nozzle disturbances to primarily investigate this interfacial instability mechanism and the role of jet head. The first disturbed area is the jet head region, and the generated disturbances are fed into the upstream region through the gas phase. This leads to the viscous boundary layer instability development on the liquid jet core. By temporal tracking of surface pattern development including the phase velocity and stability regime and by the visualization of vortex structures near the boundary layer region, it is suggested that the instability mode is the Tollmien–Schlichting (TS) mode similar to the turbulent transition of solid-wall boundary layer. It is also demonstrated that the jet head and the liquid core play an interacting role, thus the jet head cannot be neglected in Diesel injection. In this study, this type of boundary layer instability has been demonstrated as a possible mechanism of primary atomization, especially for high-speed straight liquid jets. The effect of nozzle turbulence is a challenging but important issue, and it should be examined in the future.  相似文献   

17.
On the experimental investigation on primary atomization of liquid streams   总被引:5,自引:0,他引:5  
The production of a liquid spray can be summarized as the succession of the following three steps; the liquid flow ejection, the primary breakup mechanism and the secondary breakup mechanism. The intermediate step—the primary breakup mechanism—covers the early liquid flow deformation down to the production of the first isolated liquid fragments. This step is very important and requires to be fully understood since it constitutes the link between the flow issuing from the atomizer and the final spray. This paper reviews the experimental investigations dedicated to this early atomization step. Several situations are considered: cylindrical liquid jets, flat liquid sheets, air-assisted cylindrical liquid jets and air-assisted flat liquid sheets. Each fluid stream adopts several atomization regimes according to the operating conditions. These regimes as well as the significant parameters they depend on are listed. The main instability mechanisms, which control primary breakup processes, are rather well described. This review points out the internal geometrical nozzle characteristics and internal flow details that influence the atomization mechanisms. The contributions of these characteristics, which require further investigations to be fully identified and quantified, are believed to be the main reason of experimental discrepancies and explain a lack of universal primary breakup regime categorizations.  相似文献   

18.
The general principle of utilizing the BGK equation to simulate a macroscopic gas flow is illustrated. Two typical examples, i.e., a low-speed axisymmetric submerged jet and the Prandtl-Meyer expansion to a vacuum, are presented for validating the feasibility and accuracy of the BGK-equation simulation in continuum and non-continuum flow regimes. This approach is then used to simulate the exhaust plume formed by a small manoeuvre thruster of an artificial satellite in the outer space. The plume impingement on a flat surface perpendicular to the nozzle axis is also simulated by the same method. In the latter case the impingement force acting on the flat surface is calculated. When the flow reaches to the steady state the calculated impingement force is reasonably compared with the theoretical value of the nozzle thrust. The project supported by Beijing Institute of Spacecraft Overall Design  相似文献   

19.
旋流喷嘴中空旋转射流近区域流动的研究   总被引:1,自引:0,他引:1  
从理论上分析了旋流喷嘴喷出的中空射流近区域的液膜的运动,在只考虑液膜表面张力的作用下,应用质量守恒和动量定理,建立了描述液膜运动的非线性常微分(积分)方程组,该方程组可以用数值方法方便地求解,结果表明,液体离开旋流喷嘴后在自由空间形成的液膜呈葫芦形状,其速度和液膜厚度等都周期性地变化。本结果是在液厝受拓动失称碎成液滴前的最基本运动状态,可以在射流的近区域内实验观察到,也是进一步从理论液膜破碎雾化过  相似文献   

20.
The free surface dynamics and sub-surface flow behavior in a thin (height and width much larger than thickness), liquid filled, rectangular cavity with a submerged bifurcated nozzle were investigated using free surface visualization and particle image velocimetry (PIV). Three regimes in the free surface behavior were identified, depending on nozzle depth and inlet velocity. For small nozzle depths, an irregular free surface is observed without clear periodicities. For intermediate nozzle depths and sufficiently high inlet velocities, natural mode oscillations consistent with gravity waves are present, while at large nozzle depths long term self-sustained asymmetric oscillations occur.For the latter case, time-resolved PIV measurements of the flow below the free surface indicated a strong oscillation of the direction with which each of the two jets issue from the nozzle. The frequency of the jet oscillation is identical to the free surface oscillation frequency. The two jets oscillate in anti-phase, causing the asymmetric free surface oscillation. The jets interact through a cross-flow in the gaps between the inlet channel and the front and back walls of the cavity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号