首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Angle-resolved photoelectron spectroscopy (ARPES) was used to study the Fermi surface of the heavy-fermion system YbRh(2)Si(2) at a temperature of about 10 K, i.e., a factor of 2 below the Kondo energy scale. We observed sharp structures with a well-defined topology, which were analyzed by comparing with results of band-structure calculations based on the local-density approximation (LDA). The observed bulk Fermi surface presents strong similarities with that expected for a trivalent Yb state, but is slightly larger, has a strong Yb-4f character, and deviates from the LDA results by a larger region without states around the Γ point. These properties are qualitatively explained in the framework of a simple f-d hybridization model. Our analysis highlights the importance of taking into account surface states and doing an appropriate projection along k(z) when comparing ARPES data with results from theoretical calculations.  相似文献   

2.
We report dc-magnetization measurements on YbRh2Si2 at temperatures down to 0.04 K, magnetic fields B< or =11.5 T, and under hydrostatic pressure P< or =1.3 GPa. At ambient pressure a kink at B* =9.9 T indicates a new type of field-induced transition from an itinerant to a localized 4f state. This transition is different from the metamagnetic transition observed in other heavy-fermion compounds, as here ferromagnetic rather than antiferromagnetic correlations dominate below B*. Hydrostatic pressure experiments reveal a clear correspondence of B* to the characteristic spin fluctuation temperature determined from specific heat.  相似文献   

3.
As shown by angle-resolved photoemission (PE), hybridization of bulk Yb 4f(2+) states with a shallow-lying valence band of the same symmetry leads in YbRh2Si2 to dispersion of a 4f PE signal in the region of the Kondo resonance with a Fermi-energy crossing close to Gamma[over ]. Additionally, renormalization of the valence state results in the formation of a heavy band that disperses parallel to the 4f originating signal. The symmetry and character of the states are probed by circular dichroism and the photon-energy dependence of the PE cross sections.  相似文献   

4.
We establish an effective theory for heavy-fermion compounds close to a zero temperature antiferromagnetic (AFM) transition. Coming from the heavy Fermi liquid phase across to the AFM phase, the heavy electron fractionalizes into a light electron, a bosonic spinon, and a new excitation: a spinless fermionic field. Assuming this field acquires dynamics and dispersion when one integrates out the high energy degrees of freedom, we give a scenario for the volume of its Fermi surface through the phase diagram. We apply our theory to the special case of YbRh2(Si1-xGex)2 where we recover, within experimental resolution, several low temperature exponents for transport and thermodynamics.  相似文献   

5.
In this paper the low-temperature properties of two isostructural canonical heavy-fermion compounds are contrasted with regards to the interplay between antiferromagnetic (AF) quantum criticality and superconductivity. For CeCu2Si2, fully-gapped d-wave superconductivity forms in the vicinity of an itinerant three-dimensional heavy-fermion spin-density-wave (SDW) quantum critical point (QCP). Inelastic neutron scattering results highlight that both quantum critical SDW fluctuations as well as Mott-type fluctuations of local magnetic moments contribute to the formation of Cooper pairs in CeCu2Si2. In YbRh2Si2, superconductivity appears to be suppressed at T???10?mK by AF order (TN?=?70?mK). Ultra-low temperature measurements reveal a hybrid order between nuclear and 4f-electronic spins, which is dominated by the Yb-derived nuclear spins, to develop at TA slightly above 2?mK. The hybrid order turns out to strongly compete with the primary 4f-electronic order and to push the material towards its QCP. Apparently, this paves the way for heavy-fermion superconductivity to form at Tc?=?2?mK. Like the pressure – induced QCP in CeRhIn5, the magnetic field – induced one in YbRh2Si2 is of the local Kondo-destroying variety which corresponds to a Mott-type transition at zero temperature. Therefore, these materials form the link between the large family of about fifty low-T unconventional heavy – fermion superconductors and other families of unconventional superconductors with higher Tcs, notably the doped Mott insulators of the cuprates, organic charge-transfer salts and some of the Fe-based superconductors. Our study suggests that heavy-fermion superconductivity near an AF QCP is a robust phenomenon.  相似文献   

6.
7.
8.
9.
Physicists are engaged in vigorous debate on the nature of the quantum critical points (QCP) governing the low-temperature properties of heavy-fermion metals. Recent experimental observations of the much-studied compound YbRh2Si2 in the regime of vanishing temperature incisively probe the nature of its magnetic-field-tuned QCP. The jumps revealed both in the residual resistivity ??0 and the Hall resistivity R H, along with violation of the Wiedemann-Franz law, provide vital clues to the origin of such non-Fermi-liquid behavior. The empirical facts point unambiguously to association of the observed QCP with a fermion-condensation phase transition. Based on this insight, the resistivities ??0 and R H are predicted to show jumps at the crossing of the QCP produced by application of a magnetic field, with attendant violation of the Wiedemann-Franz law. It is further demonstrated that experimentally identifiable multiple energy scales are related to the scaling behavior of the effective mass of the quasiparticles responsible for the low-temperature properties of such heavy-fermion metals.  相似文献   

10.
Nuclear magnetic resonance (NMR) and relaxation studies on 29Si have been carried out on the heavy Fermion system URu2Si2. Above the Kondo temperature of about 60 K, the nuclear relaxation time T1 is nearly temperature independent, which is consistent with the occurrence of fluctuations of localized U moments. Below about 60 K T1 is inversely proportional to temperature suggesting that the system behaves like a Fermi liquid. A sharp increase in T1 occurs below 17 K which is probably associated with the opening of an energy gap at the Fermi surface due to the formation of a spin density wave state. Below about 10 K, T1 reacquires the inverse temperature dependence observed in the 17 K ∼ 60 K temperature range.  相似文献   

11.
Angle-resolved photoemission spectra of the heavy-fermion system YbIr(2)Si(2) are reported that reveal strong momentum (k) dependent splittings of the 4f(13) bulk and surface emissions around the expected intersection points of the 4f final states with valence bands in the Brillouin zone. The obtained dispersion is explained in terms of a simplified periodic Anderson model by a k dependence of the electron hopping matrix element disregarding clearly interpretation in terms of a single-impurity model.  相似文献   

12.
13.
We report on electron spin resonance (ESR) experiments on the Heusler alloy YbRh2Pb and compare its spin dynamics with that of several other Yb-based intermetallics. A detailed analysis of the derived ESR parameters indicates the extremely weak hybridization, more localized distribution of the 4f states, and a smaller RKKY interaction in YbRh2Pb. These findings reveal the important interplay between hybridization effects, chemical substitution, and crystalline electric field interactions that determines the ground state properties of strongly correlated electron systems.  相似文献   

14.
15.
Photoluminescence (PL) characteristics have been studied on undoped and Si-doped CuGaSe2 single crystal thin films grown on GaAs (001) substrate by migration-enhanced epitaxy. Room temperature PL spectrum of an undoped layer clearly shows free excitonic emission bands related to the minimum band-edge and to the split-off valence band, but no discernible emission has been observed in the low energy area. At 4.2 K, the excitonic emission due to the split-off valence band disappears. Instead, two additional emissions appear at 1.68 and 1.715 eV which are attributed to the bound exciton and band-to-acceptor transition. The Si doping to CuGaSe2 produces two additional PL bands around 1.61 and 1.64 eV. These PL bands are attributed to the donor acceptor pair emissions due to the doped Si impurity which probably occupies Cu or Ga sites and intrinsic Cu vacancy.  相似文献   

16.
17.
YbRh2Si2 has advanced to a prototype material for investigating physics related to the Kondo effect. An optimization of the synthesis resulted in single crystals of extraordinary crystalline quality. At the atomic scale, we utilize scanning tunneling microscopy to study the topography of cleaved single crystals. A structural and chemical analysis was conducted by highly accurate x-ray diffraction and wavelength dispersive x-ray spectroscopy measurements. The latter indicate a homogeneity range of the YbRh2Si2 phase between approximately 40.0–40.2 at.% Rh. For our high-quality samples the number of defects found on the atomic scale (of the order of 0.3% of the visible lattice sites) is in quantitative agreement with a very small off-stoichiometry within this homogeneity range. Comparing our results for these samples allows an assignment of the structural defects observed at the cleaved surfaces to Rh occupying Si sites and, even less numerous Si in Rh sites. Such an analysis is hampered for samples of lesser quality, but there seem to be numerous empty Si-sites. Based on these observations the results of scanning tunneling spectroscopy can be analyzed in further detail and provide insight into the Kondo physics.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号